TINKERING LABORATORY

Course code	23ES1551	Year	III	Semester	I
Course category	Skill	Branch	Common to all	Course Type	Lab
	Enhancement	Dianch	Common to an	Course Type	
	course				
Credits	1.5	L-T-P	0-0-3	Prerequisites	-
Continuous	30	Semester End	70	Total Marks	100
Internal Evaluation	30	Evaluation	/0	TOTAL MIACKS	100

Course Outcomes: Upon successful completion of the Robotics and Drone technologies Laboratory, students will be able to:

CO's	Statement:	Blooms Level	Experime nts
CO1	Develop and analyze basic electronic circuits (series and parallel) using breadboards for real-time applications.	L3	E ₁ to E ₃
CO2	Apply simulation and programming tools (Tinker cad, Arduino IDE) to build, test, and demonstrate microcontroller-based projects.	L4	E ₄ to E ₅
CO3	Integrate and interface sensors and actuators (IR Sensor, Servo Motor, LDR) with Arduino and ESP32 for automation and smart control applications.	L4	E ₆ to E ₈
CO4	Design and implement IoT-based solutions for remote monitoring and control using ESP32 and mobile applications.	L4	E ₉ ,E ₁₂
CO5	Create and fabricate mechanical components using 3D printing technology to develop working models and prototypes.	L4	E ₁₀ to E ₁₁
CO6	Apply design thinking methodology to creatively solve problems and redesign existing products for improved functionality and user experience.	L4	\mathbf{E}_{13}

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength												
	ofcorrelations (3-High, 2: Medium, 1: Low)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2	2	2	1				1	1	1	3	3
CO2	3	3	3	2	3				2	2	2	3	3
CO3	3	3	3	2	3				2	2	2	3	3
CO4	3	3	3	3	3		2	2	2	2	3	3	3
CO5	2	2	2	2	3		1	1	2	2	2	3	3
CO6	2	2	3	2	2	2	2	3	3	3	3	3	3

Experim ents	<u>Details of Experiments</u>	Mapped CO'S
E1	Make your own parallel and series circuits using breadboard for any application of your choice.	CO1
E2	Demonstrate a traffic light circuit using breadboard.	CO1
Е3	Build and demonstrate automatic Street Light using LDR.	CO1
E4	Simulate the Arduino LED blinking activity in Tinkercad.	CO2
E5	Build and demonstrate an Arduino LED blinking activity using Arduino IDE.	CO2
E6	Interfacing IR Sensor and Servo Motor with Arduino.	CO3
E7	Blink LED using ESP32.	CO3
E8	LDR Interfacing with ESP32.	CO3
E9	Control an LED using Mobile App.	CO4
E10	Design and 3D print a Walking Robot	CO5
E11	Design and 3D Print a Rocket.	CO5
E12	Build a live soil moisture monitoring project, and monitor soil moisture levels of a remote plan in your computer dashboard.	CO4
E13	Demonstrate all the steps in design thinking to redesign a motor bike.	CO6

Students need to refer to the following links:

- 1) https://aim.gov.in/pdf/equipment-manual-pdf.pdf
- 2) https://atl.aim.gov.in/ATL-Equipment-Manual/
- 3) https://aim.gov.in/pdf/Level-1.pdf
- 4) https://aim.gov.in/pdf/Level-2.pdf
- 5) https://aim.gov.in/pdf/Level-3.pdf
- 6) https://aim.gov.in/pdf/ATL_Drone_Module.pdf