COMPUTER ARCHITECTURE AND ORGANIZATION

Course Code	23EE4501C	Year	III	Semester	I
Course Category	PE-I	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to					
CO1	Explain the foundational principles of computer architecture and organization, including instruction cycles, processing units, memory, and I/O systems (L2)					
	instruction cycles, processing units, memory, and I/O systems (L2)					
COA	Apply register transfer and microoperation techniques to interpret control logic and					
	data flow in computer systems (L3)					
	Analyze pipelining and parallel processing mechanisms to evaluate their impact on					
	processor performance (L4)					
CO4	Apply interfacing techniques and memory system concepts to develop efficient communication between system components. (L3)					
	communication between system components. (L3)					

Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1													
CO2	3											2	
CO3		3										2	
CO4	3											2	

SYLLABUS				
Unit No.	Contents	Mapped CO		
I	BASIC COMPUTER ORGANIZATION AND DESIGN Instruction Codes, Computer Registers, Computer Instructions, Timing and Control, Instruction Cycle, Memory-Reference Instructions, Input- Output and Interrupt, Complete Computer Description, Design of Basic Computer, Design of Accumulator Logic.	CO1, CO2		
II	REGISTER TRANSFER AND MICRO OPERATIONS Register Transfer Language, Register Transfer, Bus and Memory Transfers, Arithmetic Micro operations, Logic Micro operations, Shift Micro operations, Arithmetic Logic Shift Unit. Micro programmed Control: Control Memory, Address Sequencing, Micro program Example, Design of Control Unit	CO1, CO2		

	CENTRAL PROCESSING UNIT				
	Introduction, General Register Organization, Stack Organization, Instruction				
111	Formats, Addressing Modes, Data Transfer and Manipulation, Program	CO1,			
III	Control, Reduced Instruction Set Computer (RISC) Pipeline and Vector	CO3			
	Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction				
	Pipeline, RISK Pipeline, Vector Processing, Array Processors.				
	INPUT/OUTPUT ORGANIZATION				
	Peripheral Devices, I/O interface, Asynchronous data transfer, Modes of	CO1,			
IV	transfer, priority Interrupt, Direct memory access, Input-Output Processor	CO4			
	(IOP), Serial Communication.				
	MEMORY ORGANIZATION	CO1,			
V	Memory Hierarchy, Main memory, Auxiliary memory, Associate Memory,				
	Cache Memory, and Virtual memory, Memory Management Hardware.	CO4			

Learning	Resources
Laming	MUSUUI CUS

Textbooks:

1. M. Morris Mano, "Computer System Architecture", Prentice Hall of India Pvt. Ltd., 3rd Edition, Sept. 2008

Reference Books:

- 1. William Stallings, "Computer Architecture and Organization", PHI Pvt. Ltd., Eastern Economy Edition, Sixth Edition, 2003.
- 2. Linda Null, Julia Lobur, "Computer Organization and Architecture", Narosa Publications.
- 3. John. P. Hayes, "Computer System Organization", Mc GrawHill, 3rd edition, 2017.