RENEWABLE ENERGY RESOURCES

Course Code	23EE4501B	Year	III	Semester	I
Course Category	Professional Elective-I	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Power Systems - I
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to					
CO1	Understand the classification, significance, and advantages of various renewable energy					
	sources. (L2)					
CO2	Apply principles of solar and wind energy systems to explain their components, energy					
	conversion processes, and practical applications under varying environmental					
	conditions. (L3)					
	Apply concepts of biomass, geothermal, and hydel energy systems to describe their					
	working mechanisms and evaluate their use in sustainable energy production. (L3)					
CO4	Apply principles of ocean, waves, tides, hydrogen, fuel cell, and MHD energy					
	technologies to illustrate their operation and assess their relevance in modern power					
	generation.(L3)					
CO5	Analyze the performance characteristics of solar, wind, and wave energy systems by					
	evaluating output parameters and interpreting system efficiency curves (L4)					

CO\	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
PO													
CO1	2	1				1						2	1
CO2	3					1					1	2	1
CO3	3					1					1	2	1
CO4	3					1					1	2	1
CO5	2	3				1					1	2	1

	SYLLABUS				
Unit No.	Contents	Mapped CO			
I	SOLAR ENERGY Overview of Solar Energy – Classification and significance of renewable energy sources, solar radiation at the Earth Surface – Equivalent circuit of a Photovoltaic (PV) Cell – I-V & P-V Characteristics – Solar Energy Collectors: Flat plate Collectors, concentrating collectors – Solar Energy storage systems and Applications: Solar Pond – Solar water heating.	CO1 CO2 CO5			
II	WIND ENERGY Introduction – basic Principles of Wind Energy Conversion, the nature of Wind – the power in the wind – Site selection considerations – basic	CO1 CO2 CO5			

	components of Wind Energy Conversion Systems (WECS) – Classification –					
	Applications, Advantages and disadvantages of WECS.					
	BIOMASS, HYDEL AND GEOTHERMAL ENERGY					
	Biomass: Introduction – Biomass resources– Biomass conversion technologies-					
	Factors affecting Bio digestion.					
III	ro plants: Basic working principle – Classification of Small Hydropower Co					
	Stations- Advantages and disadvantages of small hydro plants.					
	Geothermal Energy: Introduction, Geothermal Sources – Applications –					
	operational and Environmental problems.					
	ENERGY FROM OCEANS, WAVES & TIDES:					
	Oceans: Introduction - Ocean Thermal Electric Conversion (OTEC) – methods –					
	prospects of OTEC in India.	CO1				
IV	Waves: Introduction – Energy and Power from the waves– Advantages and					
1	disadvantages of Wave energy – Wave Energy conversion devices.	CO5				
	Tides: Basic principle of Tide Energy – Components of Tidal Energy–					
	Advantages and limitations of tidal power generation.					
	CHEMICAL ENERGY SOURCES					
	Fuel Cells: Introduction – Fuel Cell Equivalent Circuit - operation of Fuel cell –					
V	types of Fuel Cells – Applications.					
	Hydrogen Energy: Introduction – Methods of Hydrogen production – Storage					
	and Applications.					
	Magneto Hydro Dynamic (MHD) Power generation: Principle of Operation –					
	Types.					

Text Books:

- 1. G.D.Rai, Non-Conventional Energy Sources, Khanna Publications, 2011.
- 2. John Twidell& Tony Weir, Renewable Energy Sources, Taylor & Francis, 2013.

Reference Books:

- 1. S.P.Sukhatme&J.K.Nayak, Solar Energy-Principles of Thermal Collection and Storage, TMH, 2011.
- 2. John Andrews & Nick Jelly, Energy Science- principles, Technologies and Impacts, Oxford, 2nd edition, 2013.
- 3. ShobaNath Singh, Non- Conventional Energy Resources, Pearson Publications, 2015.

E-Resources:

- 1. https://archive.nptel.ac.in/courses/103/103/103103206
- 2. https://archive.nptel.ac.in/courses/103/107/103107157