POWER ELECTRONICS LAB

Course Code	23EE3551	Year	III	Semester(s)	I
Course Category	Professional Core	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	
Continuous Internal Evaluation:	30	Semester End Evaluation:	7.p0	Total Marks:	100

	Course Outcomes				
Upon	Upon successful completion of the course, the student will be able to				
CO1	Understand the characteristics and switching behavior of power semiconductor				
	devices such as SCR, MOSFET, and IGBT used in power electronic circuits. (L2)				
CO2	Apply various triggering and control techniques to operate AC-DC converters, AC				
	voltage regulators, and cycloconverters for different load conditions. (L3)				
CO3	Apply the principles of operation of DC-DC converters and single-phase/three-phase				
	inverters to convert and control power efficiently. (L3)				
CO4	Analyze the performance of power electronic converters and inverters under				
	different conduction modes and load types using waveform observations and				
	measurements. (L4)				
CO5	Conduct experiments as a team or individual, Prepare clear and well-organized				
	lab reports with circuit diagrams, procedures, results, and conclusions.				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	2	2		2							2	2	2
CO2	3	2		3	2						3	3	2
CO3	3	2		3	2						3	3	2
CO4	2	3		3	2						3	3	2
CO5								3	3				

Any 10 of the following experiments are to be conducted:

	Syllabus					
Exp.	Contents	Mapped CO				
No.						
1	Characteristics of SCR - Power MOSFET & Power IGBT.	CO1				
		CO5				
2	R, RC & UJT firing circuits for SCR.	CO1				
		CO2				
		CO5				
3	Single -Phase semi-converter with R & RL loads.	CO2				
		CO4				
		CO5				
4	Single -Phase full-converter with R & RL loads.	CO2				
		CO4				

		CO5
5	Three- Phase full-converter with R & RL loads.	CO2
		CO4
		CO5
6	Single-phase dual converter in circulating current & non-circulating	CO2
	current mode of operation.	CO4
	1	CO5
7	Single-Phase AC Voltage Regulator with R & RL Loads.	CO2
		CO4
		CO5
8	Single-phase step down Cycloconverter with R & RL Loads.	CO2
		CO4
		CO5
9	Boost converter in Continuous Conduction Mode operation.	CO3
		CO4
		CO5
10	Buck converter in Continuous Conduction Mode operation.	CO3
		CO4
		CO5
11	Single -Phase square wave bridge inverter with R & RL Loads.	CO3
		CO4
		CO5
12	Single - Phase PWM inverter.	CO3
		CO4
		CO5
13	Three-phase bridge inverter with 120° and 180° conduction mode.	CO3
		CO4
		CO5
14	SPWM control of Three-phase bridge inverter	CO3
		CO4
		CO5

Learning Resources

Text Books:

- 1. Ned Mohan, Tore M Undeland, William P Robbins, "Power Electronics: Converters, Applications and Design" by John Wiley & Sons, 2002.
- 2. M. H. Rashid, "Power Electronics: Circuits, Devices and Applications", Prentice Hall of India, 2nd edition, 2017.
- 3. L. Umanand, "Power Electronics: Essentials & Applications", Wiley Pvt. Limited, India, 2009

Reference Books:

- 1. Philip T.Krein. "Elements of Power Electronics", Oxford University Press; Second edition, 2014.
- 2. P. S. Bhimbra, "Power Electronics", Khanna Publishers.
- 3. G. K. Dubey, S. R. Doradla, A. Joshi and R. M. Sinha, "Thyristorised Power Controllers", New Age International (P) Limited Publishers, 1996.
- 4. Daniel W. Hart, "Power Electronics", Mc Graw Hill, 2011.