RENEWABLE ENERGY SOURCES

Course Code	23EE2501	Year	III	Semester	I
Course Category	OE-I	Branch	Except EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	BEEE
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes					
Upon	successful completion of the course, the student will be able to				
L CO1	Understand the classification, significance, and advantages of various renewable energy				
	sources. (L2)				
	Apply principles of solar and wind energy systems to explain their components, energy				
CO2	conversion processes, and practical applications under varying environmental conditions.				
	(L3)				
CO2	Apply concepts of biomass, geothermal, and hydel energy systems to describe their				
CO3	working mechanisms and evaluate their use in sustainable energy production. (L3)				
	Apply principles of ocean, waves, tides, hydrogen, fuel cell, and MHD energy				
CO4	technologies to illustrate their operation and assess their relevance in modern power				
	generation. (L3)				
005	Analyze the performance characteristics of solar, wind, and wave energy systems by				
CO5	evaluating output parameters and interpreting system efficiency curves (L4)				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	2	1				1							
C02	3					1					1		
CO3	3					1					1		
CO4	3					1					1		
C05	2	3				1					1		

	SYLLABUS	
Unit	Contents	Mapped
No.		CO
I	SOLAR ENERGY Introduction - Renewable Sources - prospects, solar radiation at the Earth Surface - Equivalent circuit of a Photovoltaic (PV) Cell - I-V & P-V Characteristics - Solar Energy Collectors: Flat plate Collectors, concentrating collectors - Solar Energy storage systems and Applications: Solar Pond - Solar	CO1 CO2 CO5
II	water heating - Solar Green house. WIND ENERGY Introduction - basic Principles of Wind Energy Conversion, the nature of Wind - the power in the wind - Wind Energy Conversion - Site selection considerations - basic components of Wind Energy Conversion Systems (WECS) - Classification - Applications.	CO1 CO2 CO5

	BIOMASS, HYDEL AND GEOTHERMAL ENERGY	
	Biomass: Introduction - Biomass conversion technologies- Photosynthesis.	
	Factors affecting Bio digestion.	CO1
III	Hydro plants: Basic working principle – Classification of hydro systems:	CO3
	Large, small, micro hydel plants.	
	Geothermal Energy: Introduction, Geothermal Sources - Applications -	
	operational and Environmental problems.	
	ENERGY FROM OCEANS, WAVES & TIDES:	
	Oceans: Introduction - Ocean Thermal Electric Conversion (OTEC) - methods -	
	prospects of OTEC in India.	CO1
IV	Waves: Introduction - Energy and Power from the waves - Wave Energy	CO4 CO5
	conversion devices.	COS
	Tides: Basic principle of Tide Energy -Components of Tidal Energy.	
	CHEMICAL ENERGY SOURCES	
	Fuel Cells: Introduction - Fuel Cell Equivalent Circuit - operation of Fuel cell -	
	types of Fuel Cells - Applications.	001
V	Hydrogen Energy: Introduction - Methods of Hydrogen production - Storage	CO1 CO4
	and Applications	CO4
	Magneto Hydro Dynamic (MHD) Power generation: Principle of Operation -	
	Types.	

T	•	D	
Lear	nıng	Resource	S

Text Books:

- 1. G.D.Rai, Non-Conventional Energy Sources, Khanna Publications, 2011.
- 2. John Twidell& Tony Weir, Renewable Energy Sources, Taylor & Francis, 2013.

Reference Books:

- 1. S.P.Sukhatme&J.K.Nayak, Solar Energy-Principles of Thermal Collection and Storage, TMH, 2011.
- 2. John Andrews & Nick Jelly, Energy Science- principles, Technologies and Impacts, Oxford, 2nd edition, 2013.
- 3. ShobaNath Singh, Non- Conventional Energy Resources, Pearson Publications, 2015.

E-Resources:

- 1. https://archive.nptel.ac.in/courses/103/103/103103206
- 2. https://archive.nptel.ac.in/courses/103/107/103107157