Switching Theory and Logic Design

Course Code	23EC3302	Year	II	Semester	I	
Course Category	Program Core	Branch	ECE	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	Nil	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

Course Outcomes				
Upon successful completion of the course, the student will be able to				
CO1 Perform Binary arithmetic operations using Complements and identify		L3		
CO2	Binary Codes. CO2 Implement Switching Functions using Logic Gates.			
CO3	Apply Boolean theorems & K-Map to simplify the Switching Functions.	L3 L3		
CO4	Analyse various Combinational and Sequential circuits.	L4		
CO5	Design Combinational and Sequential circuits for the given specifications.	L5		

C	Contribution of Course Outcomes towards achievement of Program Outcomes &												
	Strength of Correlations (3:High, 2:Medium, 1:Low)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	2							1	1		1		
CO2	2							1	1		1		
CO3	2							1	1		1		
CO4		3						1	1		1	2	
CO5			3					1	1		1	2	1
Avg.	2	3	3					1	1		1	2	1

	Syllabus				
Unit No.	Contents	Mapped CO			
1	Binary Codes : Signed Binary Numbers, Complements, 84-2-1 code, 642-3 code, 2421 code etc., BCD code, Gray code, Excee-3 code, Error detection and correction codes: Parity code & Hamming code. Boolean Algebra : Basic theorems and Properties of Boolean algebra, Algebraic simplification of Switching Functions, Digital Logic Gates	CO1, CO3			
2	Switching Functions : Canonical and Standard forms, Simplification of switching functions using K-map method, Four-variable map, Five-variable map, Don't-care conditions, NAND-NAND and NOR-NOR realizations of switching functions.	CO2, CO3			
3	Combinational Logic Circuits : Introduction, Design procedure, Half adder, Full Adder, Half Subtractor, Full Subtractor, Parallel Binary Adder, Binary Adder/Subtractor, Decoders, Encoders, Multiplexers, De-Multiplexers, Realization of Boolean functions using Decoders and Multiplexers, Code Converters.	CO2, CO4, CO5			
4	Sequential Logic Circuits: Latches, Flip-Flops, Excitation tables of	CO2,			

	Flip-flops, Conversion from one flip-flop to another, Registers, Shift registers, Ripple counters, Design of Synchronous Counters, Ring counter.	CO4, CO5
5	Synchronous Sequential Machines : Analysis of Clocked Sequential Circuits, State diagrams, State tables, Mealy and Moore models, State reduction, Design procedure, Design and realization of circuits using various Flip-flops.	CO2, CO4, CO5

Learning	Resources
----------	-----------

Text Books

1. Michael D. Ciletti, M. Morris Mano, Digital Design, Pearson Education, 4th Ed., 2007.

Reference Books

- 1. Zvi Kohavi, Switching and Finite Automata Theory, 2nd Ed, Tata McGraw-Hill Education, 2008.
- 2. John F. Wakerly, Digital Design Principles and Practices, Pearson Education, 4th Ed., 2008.
- 3. Charles Roth, Jr., Larry Kinney, Fundamentals of Logic Design, Cengage Learning, India, 7^{th} Ed., 2013.

e- Resources & other digital material

- 1. http://www.ece.ubc.ca/~saifz/eece256.html
- 2. http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT%20Guwahati/digital_circuit/frame/index.html