PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY KANURU, VIJAYAWADA

Department of Computer Science and Engineering

FORMAL LANGUAGES AND AUTOMATA THEORY SYLLABUS

Course Code	23CS3503	Year	III	Semester	I	
Course Category	Professional Core	Branch	CSE	Course Type	PC	
Credits	3	L – T – P	3-0-0	Prerequisites	Discrete Mathematical Structures	
Continuous Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Cour	Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to:					
	Apply concepts of formal languages and automata to solve computational problems.	L3				
	Apply finite automata, regular expressions, context-free grammars, and pushdown automata for the design of language recognizers.	L3				
CO3	Apply Turing machine techniques to solve problems.	L3				
CO4	Analyze automata and their computational power to recognize languages.	L4				

Contri	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
correla	correlations (3:Substantial, 2: Moderate, 1:Slight)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	✓													
CO2	✓													
CO3	✓													
CO4		✓												

Syllabu	is	T					
Unit No.	CONTENTS	Mapped CO					
	Automata: Why study Automata Theory?, The central Concepts of Automata Theory.						
I	Finite Automata: Deterministic Finite Automata, Non-Deterministic Finite Automata, Finite Automata with Epsilon Transitions, Finite Automata with Outputs(without conversions)						
	Regular Expressions and Languages : Regular Expressions, Finite Automata and Regular Expressions, Algebraic Laws for Regular expressions (without proofs).						
II	Properties of regular Languages: Proving Languages not to be regular, Closure properties of Regular Languages (without proofs), Equivalence and Minimization of Automata.						
	Context–free grammars and Languages: Context–free grammars, Parse trees, Ambiguity in grammars and Languages,	CO1,					
III	Properties of Context-free languages: Normal Forms for Context Free Grammars, The Pumping Lemma For Context Free Languages						
IV	Pushdown Automata: Definition of the Pushdown Automaton, The Languages of a PDA, Equivalence of PDA's and CFG's, Deterministic Pushdown Automaton.						
V	Turing Machines: Problems that computer cannot solve, The Turing Machine, Programming Techniques for Turing Machine, Extensions to the Basic Turing Machine						
•	Undecidability: Recursively Enumerable Language, Universal Turing Machines (UTM), Halting Problem, Post Correspondence Problem, Church Hypothesis.						

Learning Resources

Text Books

- 1. Introduction to Automata Theory, Languages and Computations, J.E.Hopcroft, R.Motwani and J.D Ullman, Third Edition, Pearson Education.
- 2. Theory of Computer Science, Automata languages and computation, Mishra, Chandra Shekaran, Second Edition, PHI.

Reference Books

- 1. Introduction of the Theory and Computation, Michael Sipser, 1997, Thomson Brokecole.
- 2. Elements of The theory of Computation, H.R.Lewis and C.H.Papadimitriou, Second Edition, 2003,

Pearson Education/PHI. 3. Formal Languages and Automata Theory, Basavarj S. Anami, Karibasappa K.G, WILEYINDIA. 4. Introduction to Languages and the Theory of Computation, J.C.Martin, Third Edition, TMH, 2003. e- Resources & other digital material 1.https://www.udemy.com/course/formal-languages-and-automata-theory-e/ 2.https://eecs.wsu.edu/~ananth/CptS317/ 3.https://nptel.ac.in/courses/106/103/106103070/ 4.https://nptel.ac.in/courses/106/106/106106049/ 5.https://nptel.ac.in/courses/111/103/111103016/ 6.https://nptel.ac.in/courses/106/105/106105196/