CHEMISTRY

Course Code	23BS1102	Year	I	Semester	I
Course Category	Basic Sciences	Branch	CSE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Interpret fundamental concepts of chemistry. L2				
CO 2	Apply knowledge of quantum mechanics, materials and energy sources to describe and solve problems. L3				
CO3	Utilize knowledge of conducting polymers and instrumentation to design and develop new materials.L3				
CO4	Analyze bonding models, Modern engineering materials, and electrochemical processes to make informed decisions. L4				
CO5	Analyze the applications of polymers and instrumentation methods. L4				

Contribution of Course Outcomes towards achievement of Program Outcomes Strength of correlations(3:High,2: Medium, 1:Low)Correlation between CO - PO PO2 PO3 PO4 PO7 PO8 PO1 PO5 PO6 PO9 PO10 PO11 PO12 PSO1 PSO2 CO1 2 CO2 3 CO3 3 3 1 1 CO4 3 **CO5** 1

SYLLABUS				
Unit	Unit Contents			
No.		CO		
I	UNIT I Structure and Bonding Models: Fundamentals of Quantum mechanics, Schrodinger Wave equation, significance of Ψ and Ψ 2,particle in one dimensional box, molecular orbital theory – bonding in homo-and hetero nuclear diatomic molecules – energy level diagrams of O_2 and CO etc. π -molecular orbitals of butadiene and benzene-calculation of bond order.	CO1,CO2 CO4		
II	UNIT II Modern Engineering materials Semiconductors- Introduction, basic concept, applications.	CO1,CO2 CO4		

	PVF	23	
	Super conductors-Introduction ,basic concept, applications.		
	Super capacitors- Introduction, Basic Concept, Classification and Applications. Nano		
	materials-Introduction, classification, properties and applications of Fullerenes, carbon		
	Nano tubes, Graphenes and nanoparticles.		
III	UNIT III Electrochemistry and Applications		
	Electrochemical cell, Nernst equation, cell potential calculations and numerical problems.		
	potentiometry- potentiometric titrations (redox titrations), concept of conductivity,	CO1 CO2	
	conductivity cell, conduct metric titrations (acid-base titrations).	CO4	
	Electrochemical sensors – potentiometric sensors with examples, amperometric sensors with		
	examples. Primary cells – Zinc-air battery, Secondary cells – lithium-ion batteries- working		
	of the batteries including cell reactions.		
	Fuel cells- hydrogen-oxygen fuel cell- working of the cells. Polymer Electrolyte Membrane		
	Fuel cells (PEMFC).		
	UNIT IV Polymer Chemistry		
	Introduction to polymers, functionality of monomers, chain growth and step growth		
IV	polymerization, coordination polymerization with specific examples and mechanisms of		
	polymer formation	CO1,CO3	
	Plastics – Thermo and Thermosetting plastics, Preparation, properties and applications of –	,CO5	
	PVC, Teflon, Bakelite, Nylon-6,6, carbon fibres.		
	Elastomers-Buna-S,Buna-N-preparation, properties and applications. Conducting polymers		
	poly acetylene, poly aniline, – mechanism of conduction and applications. Bio-Degradable		
	polymers - Poly Glycolic Acid (PGA), Polyl Lactic Acid (PLA).		
	UNIT V Instrumental Methods and Applications		
	Electromagnetic spectrum- Absorption of radiation- Beer-Lambert's law. UV- Visible		
	Spectroscopy, electronic transition, Instrumentation, IR spectroscopies, fundamental modes		
	and selection rules, Instrumentation. Chromatography-Basic Principle, Classification.		
	HPLC:Principle, Instrumentation and Applications.		

Learning Resources

Text Books:

- 1. Jain and Jain, Engineering Chemistry, 16/e, Dhanpat Rai, 2013.
- 2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.

Reference Books:

- 1. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
- 2. J.D. Lee, Concise Inorganic Chemistry, 5th Edition, Wiley Publications, Feb. 2008
- 3. Textbook of Polymer Science, Fred W. Billmayer Jr, 3rd Edition

E-Resources:

https://nptel.ac.in/courses/103108100

https://onlinecourses.nptel.ac.in/noc23_cy19/preview

https://nptel.ac.in/courses/118104008