40T agey

¥ jo v 28eq

AR

140)8)

‘g—w
dloym ‘w pouwr j = ()Y :uonouny ysey
ISpISUOD) "IOPIO O} Ul PILIOSUI AIB G| pue
LTV SOT LI ‘SO €V TL BT 9996
"2[qe} ysey oY) ojul

SJUSWILS FUIMO[[0] 9} HAsUI ‘Burureyo
3uisn) ‘sjofs g sey J[qe} © ownssy

@

ﬂVU i | ‘Surysey jo ssodind oy aqudsaq (F'1
100 | I'T 9om Areurq augeq | (1'1
‘woneuswa[dun Aeire 19A0 ananb
100 11 Jo uoneyuwadur 1sjurod Jo sagejueape o) w1 (U
¢3ou 10 Kydura st ananb y00yo 03 uonipuos g
100 11 ST Jegm ‘onanb jo woneiuswaldwmy Je[nomo Sty U 31
‘wonejuswa[duir Ae1re Ul Yor)S JO UOHIPUOD
03] T1 MO[}JopUn pue UOHIPUOD MO[ISA0) AAID| (']
0D | 11 1oess jo suoneoridde ayy 3sr7| (977
INONYS BIeP IST] PayuI] Jo uoneuowa[dwi
100 1T SY3 UL [NJasn oIe SaInjonns [BHUaIL)aI-Jjas Mol | (p']
"SQUI[OM} IO SUO Uf
100 | 71 |1emsue mok Agusng Jusdge St yorgA “siojurod
pue sfeure yim 1si Jo uoneluswaduy aredwo) | (o]
10D | 71 "YOIe9s Tesur] pue yoress Areuiq 9)enuaIoli| (q'1
10D | IT '2d4) eyep 1ensqe suyeq | (e
0D |19
V- 1Ldvd

awoNQ 98I0 — O

*a0e[d ouo I paromsue aq jsnw Joded uopsang) jo sued |1y 4
"SJew (] S9LLIED uonsang) yoeg

N {983 Woy 201070 [ewIajul Ue [im suonsonb Aesss ¢ sureuos g-ueq ‘¢

"SR

T S9kLIes uonsany) yoey ‘suonsonb Jomsue 110gs (] surejuoo V-Hed ‘7
“H PUB Y sueq om) sutejuod soded uonsonb styy -1 :aj0N

[0A37T swoo[g - Tq

0L ‘SjIe]q "Xey

€T dAd

(SA “TINIV ‘LI “ASD 10§ uommo)))
STANLONYLS VIVA

PZ0T A'IN[- suopvwimexy Iem3ay — 19)soWa§ I - YOIL Y I

SINOY ¢ :uoneIn(y

10ZESAET ‘TOZENVET “TOTELIET ‘TOTESIET 2P0

NS

1488,

el

PET66°99°0L°09°01°S9°sH'SS
:sAay Suimorioy ynm 951 yoress Areuiq
PUSuU0) 9am yoreds Areurg ouyd(]

(e

11

d0

NS

rOD

[

"30I) YOIBIS AIRUIQ U JUSWID[D
UE JO UOTO[Op pUB UOILIISUT JNOGR SSNOSI(]

@Q

Ne¢

[49,8)

"UOISIN[09 Jo aseo ur Jurqoid
oneipenb Ajdde om j1 ‘parois aq M

s£oY osay) MOy MOYS ‘[1 9zIs 9[qe} YpM

66 T9 ‘St ‘101 ‘€L ‘T6 ‘S8 ‘9L 00L ‘0§
se A9 jo aouanbos pue .11 powr Koy,
S& uonouny ysey ojdurs e JopIsuos sn 3oy

(e

01

A-LINQN

PART -B

UNIT-III

Develop algorithm to convert infix

expression to postfix expression.

L3

CO3

5M

Explain implementation of stack using
pointers.

L2

CO1

5M

OR

Explain push() and pop() functions of
stack data structure with array
implementation.

L2

CO1

5M

Describe the process of evaluating post
fix expression using stack.

L2

CO3

SM

UNIT-IV

Explain about array implementation of
queue.

L2

COl1

SM

What is circular queue? What is
advantage of circular queue over linear
queue? Demonstrate with a scenario.

L2

CO1

SM

OR

Find the list of elements in the queue
with following operations in sequence:
insert(10), insert(20), delete, insert(30),
insert(40), delete. Assume initially queue
is empty.

L3

cO3

SM

Max.
BL | CO Marks
UNIT-I
a) |Apply bubble sort on the following|L3 |CO2| 5M
elements: 10, 4, 12, 3, 23, 1. Show each
iteration very clearly.
b) |Discuss how do we measure the|L2 |[COl| 5M
complexity of an algorithm.
OR
a) | Explain selection sort algorithm with|{L2 |CO2| 5M
suitable example.
b) |Discuss the importance of linear data|L2 [COl| 5M
structures.
UNIT-II
a) | Develop pseudo code to print elements of | L3 [CO3| 5M
linked list in reverse order.
b) | Discuss the following operations in|L2|CO3| 5M
circular linked list:
1. Insert an element
ii. Delete an element
OR
a) |Compare singly linked list and doubly|L2 [COl1| 5M
linked list.
b) | Explain the array implementation of list| L2 [CO1| 5M

in detail.

b)

Discuss about pointer implementation of
queue.

12

Co1

5M

Page 20f 4

Page 30f4

Scheme: Any two differences - 1M ' '

Justification — 1M

Scheme: Ant two uses/benefits of self-referential structures - 2M

_Le) | List the applications of stack. . [cor |

Scheme: Any Two applications — 2M

1.0) |Give the overflow condition and underflow

condition of stack in array implementation. L1 | co1

Scheme: Overflow condition — 1M
Underflow condition - 1M

1.g) |In the circular implementation of queue, what is

the condition to check queue is empty or not? T Col J

Scheme: Condition to check empty queue — 2M

" 1.h) |List the advantages of pointer implementation of
queue over array implementation.

L1 | COl l

Scheme: Any two advantages — 2M

1.i) |Define binary tree. | L1 |col |

Scheme: Definition — 2M

[1.j) |Describe the purpose of hashing, | L2 |col |

Scheme: Purpose of Hashing — 2M

PART - B

BL| co | Max|
e |1 [Marks)
UNIT-I f

2 | a) Apply bubble sort on the following 1.3 1CO2!) 5M

clements: 10, 4, 12, 3, 23, 1. Show each | | %
. | |
iteration very clearly. | | ;

L2 [COi| 5 M

'b) Discuss how do we measure the g :
- |
“complexity of an algonthm. | |
Scheme: 2 a) For showing five iterations - 5M

2 b) Measuring of Time-complexity for a sample Algorithm - 3M

Measuring of Space-complexity for a sample Algorithm — 2M

; OR
;'3“'}_5) ' Explain selection sort algorithm with| L2 | CO?2 | 5 M
" L_ suitable example. !

ib) Discuss the importance of linear data|]2 CO1| 5
' i.stmcrures.

Scheme: 3 a) Explanation of Algorithm/Procedure — 3M

Suitable example - 2M
3 b) Any Five important features of Linear Data Structures — SM

L : , UNIT-II

' 4 f a) | Develop pseudo code to print elements of L3 /CO3| sM |

f'L linked list in reverse order.

b) | Discuss the following operaticis in| 12 CO3| sM
circular linked list:

! 1. Insert an element

1

| | 1. Delete an element

Scheme: 4 a) Pseudocode — SM
4 b) Insertion — 2M Deletion — 3M

= e _OR 0y
j 5/ a) f Compare singly linked list and doubly | L2 |CO1] 5M
| | linked list. -

! b) | Explain the array 1mplementanon of list| L2 |CO1| 5M

f in detail.

Scheme: 5 a) Any 5 Comparisons — 5M

5 b) Sophisticated explanation of list — 5M
o UNIT-111 e
6 | a) | Develop algorithm to convert infix | L3 | CO3
| expression to postfix expression.

b) | Explain implementation of stack using|L2 |CO] SM j
pointers. |

w
4
2

Scheme: 6 a) Algorithm/Procedure — 5M

6 b) Sophisticated explanation of Stack using linked list - 5M

Scheme: 7 a) push() operation — 3M

pop() operation — 2M

7 b) Sophisticated explanation with an example — 5SM

; OR
E7 a) Explaln push() and pop() functions of L2 CO]} SM
i stack data structure with arrdy] f
:mplcmentatmn %

b) Descnbe the process of c:«alummg poqtl_.2 Co3| SM

UNIT-IV
| 8 id) vf\f[ﬁﬂm about ATy nnpwxm.ni;ﬂ_lgﬁuot B9 fCOl! SM
!b) W’hdt 8 ciyovias fmd.lb What is|L2 !COl| 5M
| ‘advantage cf gqueue over linear | 5
|| |queue? Demoi e v thascenario. |||
Scheme: 8 a) Sophisticated explanation of queue using array— 5M
8 b) Definition — 1M
Advantages — 2M
Scenario - 2M
S _—
i }a) Find the list of elements in the queue | [L3[co3] sMm |
Z | with following operations in sequence: |
insert(10), insert(20), delete, insert(30),
i iinsert(él()), delete. Assume nitially queue |
L IS empty. L5 L]
| b) | ‘Discuss about pmntu :mplcmm[atlon of{ L2 CO1| SM
i,.é Equeue. i

Scheme: 9 a) Showing Queue contents for every operation with explanation — SM

9 b) Sophisticated explanation of queue using linked list — 5M

oMY S

Let us consider a simple hash function as| L4 [CO4| 5 M
“key mod 11” and sequence of keys as| |
1 50, 700, 76, 85, 92, 73, 101, 45, 62, 99]a

will be stored, if we apply quadratic
probing in case of collision,

| |element in binary search tree.

with table size 11. Show how these keys : /
]

' Discuss about insertion and delcuon ofan| L2 |ICO4| 5M |

S R

eSS

Scheme: 10 a) Constructlon of Hash Table with quadratic probing — 5M

10 b) Insertion operation — 2M Deletion operation — 3M

OR

ll(a)

Define Binary search tree. Ccnstruct L3[co4] 5 M

b,maxy search tree with following keys:
55,45 ,65,40,60,70,66,99, 2,34

b)

|
|
.
|
!

| into the hash tabile

Assume a table has 5 slofs. Using | 14 [CO4| S M
chaining, insert the foliowing elements ,

1 56,66,18,72,43,65,6,17.10 5,64 ’h

land 15 are inserted in the order. ¢ Gﬁmde?‘
Hash function: h{k) = k mod m, where
m=8. :

Scheme: 11 a) Definition — 1M Construction of BST — 4M

11'b) Construction of Hash Table using chaining — 5M

Scheme: Definition — 2M

Ans: An abstract data type (ADT) is a mathematical model for data types, specifically
in terms of possible values, possible operations on data of this type, and the behavior

of these operations. |
ADT is a collection of data together with a set of operations on that data.

ADT = Data + Operations

Scheme: Any two differences — 2M

Ans:
[; iE 5 !
: : ; e LSRRG 4
b - Linear Search
e }i “ ; 5]
! ¥
Proe-Condition @ i Any random on%;er H
Fon VS o S A I e i S
C Sre L Preferred for Small Hsas j Preferved for large hists. i
- ! T - s e g S e . e et e e e P -t e ;
- Specd f Slow Foast
i A T T e\ LA P it R A e
Dimonsions : ;:'I‘;idlnlensiunml Ay st al=abe L Only single dimensional RETAM IS s
S e . B e e s e o =gt - b - LI
£ § .
Tome Complexity f Ofn} / Linear Graph T Oflog-Nn) Logarithmic Graph

l.c) |Compare implementation of list with arrays and
pointers. Which is efficient? Justify your answer| L2 | COl
in one or two lines.

Scheme: Any two differences - 1M
Justification — IM

Ans:

Lists Implemented with Arrays

[l Random Access: Direct access to elements by index.

[Cache Efficiency: Elements are stored contiguously, which can improve cache
performance in some scenarios.

[Simplicity: Relatively straightforward to implement and understand.

Lists Implemented with Pointers (Linked Lists)

L Dynamic Size: Can efficiently grow and shrink without the overhead of resizing,

[J Memory Efficiency: Allocates memory as needed, reducing potential wasted
space.

[l Flexible Insertions and Deletions: Allows for efficient insertions and deletions at
both ends and within the list (with traversal).

Implementation of List with pointer is Better

Two Reasons:

With array implementation, Insert at beginning - O(n) but
With pointer implementation, Insert at beginning - O(1)
With array implementation, Delete at beginning - O(n) but
With pointer implementation, Delete at beginning - O(1)

How self-referential structures are useful in the

1.d) [
implementation of linked list data structure, oo 1‘)

Scheme: Ant two uses/benefits of self-referential structures - 2M
Ans:

Benefits of Self-Referential Structures in Linked Lists

Dynamic Size

Efficient Insertions and Deletions

Flexibility

Memory Utilization

Linked lists use memory more efficiently for data sets that change frequently, as they
do not require contiguous memory allocation.

| L) [List the applicationsofstack. ~~ ~ TL1[Co1|

Scheme: Any Two applications — 2M
Ans:

Expression Evaluation and Conversion
String Reversal

Balanced Parentheses

Palindrome Checking

Function Call Management
Backtracking Algorithms

Undo Mechanism in Applications

Parsing and Compilers

Browser Navigation

Give the overflow condition and underﬁew
condition of stack;m’array mplementahon

L [col

Scheme: Overflow condition — 1M
Underflow condition - IM
Ans:

1) Stack Overflow: A stack overflow occurs when a program attempts to use more
space on the call stack than is available.

If Stack implemented with arrays stack overflow: if(top==size-1) printf(“Overflow”);

ii) Stack Underflow: A stack underflow occurs when a program attempts to pop an
itém from an empty stack.

If Stack implemented with arrays if(top==-1) printf(“Underflow”); or
If Stack implemented with Linked list if(top==NULL) printf{“Underflow”);

1 g) In the circular implementation of queue, what is O
| the condition to check queue is empty or not? kil

Scheme: Condition to check empty queue — 2M

Ans: In a circular linked list implementation of a queue, you can check if the queue is
empty using the following condition:

if (front == NULL) {
// Queue is empty
}

In a circular Array implementation of a queue, you can check if the queue is empty
using the following condition:

if (front==rear || front == -1 || rear == -1){
// Queue is empty
}

I” 1.h) |

List the advantages of pointer implementation of i l o1 ‘

queue over array implementation.

Scheme: Any two advantages — 2M

Ans: Pointer implementation of queues using linked lists offers several advantages
over array-based implementations,

Here are some key advantages:

Dynamic Size

Efficient Memory Usage

No Overflow

Constant Time Operations

No Shifting of Elements

Simpler Code for Dynamic Operations
Better for Unknown or Large Sizes

| Li) |Define binary tree. e | L1 |col |

Scheme: Definition — 2M

Ans: A binary tree is a hierarchical data structure in computer science where each
node has at most two children, referred to as the left child and the right child.
Binary Tree
®HOO
@ 0

[71j) | Describe the purpose of hashing, | L2 | o1 |
Scheme: Purpose of Hashing — 2M

Ans: Hashing is a technique in data structures that uses a hash function to map data of
any size to a fixed-size value. The main purpose is to enable fast and efficient data
access by reducing search time.

PART - B

et e z,

r
|

]BLJ (;0

| UNIT-I
2 | a) [Apply bubble sort on the following|L3 [CO2] 5|
==t clements: 10, 4, 12, 3, 23, 1. Show each |

| iteration very clearly.

i

, |

b) | Discuss how do we measure the| L2 |COl1 M?M‘“T
|

|

ORISR SRR, i i
2 a) For showing five iterations - 5M

Ans: Bubble sort works on the repeatedly swapping of adjacent elements until they are
not in the intended order.

let's apply the bubble sort algorithm step-by-step to sort the elements: 10,4, 12..5, I3
1. '

Initial Array:
10,4,12,3,23,1
First Pass:

In each pass, adjacent elements are compared and swapped if they are in the wrong
order.

Comparing 10 and 4:
Swap because 4 < 10
4,10,12,3,23,1

Ay oy

- Comparing 10 and 12:
No swap because 10 < 12
4,10,12,3.23,1
Comparing 12 and 3:
Swap because 3 < 12
4,10,3,12,23,1
Comparing 12 and 23:
No swap because 12 < 23

4,10,3,12,23,1

Comparing 23 and 1:
Swap because 1 <23
4,10,3,12,1,23
First Pass Result:
4,103.12.1,23
Second Pass:
Comparing 4 and 10:
No swap because 4 < 10
4.10.3,12.1.23
Comparing 10 and 3:
Swap because 3 < 10
4,3,10,12,1,23
Comparing 10 and 12:
No swap because 10 < 12
4,3,10,12,1,23
Comparing 12 and 1:
Swap because 1 <12
4,3,10,1,12,23
Comparing 12 and 23:
No swap because 12 < 23
4,3,10,1,12,23
Second Pass Result:
4,3,10,1,12,23
Third Pass:
Comparing 4 and 3:
Swap because 3 <4
3,4,10,1,12,23
Comparing 4 and 10:

No swap because 4 < 10

3,4,10,1,12,23
Comparing 10 and 1:
Swap because 1 < 10
3,4,1,10,12,23
Comparing 10 and 12:
No swap because 10 < 12
3,4,1,10,12,23
Comparing 12 and 23:
No swap because 12 < 23
3,4,1,10,12,23
Third Pass Result:
3,4.1,10,12,23
Fourth Pass:
Comparing 3 and 4:
No swap because 3 <4
3,4,1,10,12.23
Comparing 4 and 1:
Swap because 1 <4
3,1,4,10,12,23
Comparing 4 and 10:
No swap because 4 < 10
3,1.4,10,12,23
Comparing 10 and 12:
No swap because 10 < 12
3,1.4,10,12,23
Comparing 12 and 23:
No swap because 12 < 23
3,1,4,10,12,23

Fourth Pass Result:

3,1:4,10.12.23
Fifth Pass:
Comparing 3 and 1:
Swap because 1 < 3
1,3,4,10,12,23
Comparing 3 and 4:
No swap because 3 < 4
1,3,4,10,12,23
Comparing 4 and 10:
No swap because 4 < 10
1.3.4,10,12,23
Comparing 10 and 12:
No swap because 10 < 12
1,3,4,10,12,23
Comparing 12 and 23:
No swap because 12 < 23
1,3,4,10,12,23
Fifth Pass Result:
1,3:4,10.12.23
Final Sorted List:
1,3,4,10.12.23

The array is now sorted using the bubble sort algorithm after 5 passes. Each pass
involves comparing adjacent elements and swapping them if necessary to gradually
move larger elements towards the end of the array.

2 b) Measuring of Time-complexity for a sample Algorithm - 3M
Measuring of Space-complexity for a sample Algorithm - 2M

Ans: Complexity in algorithms refers to the amount of resources (such as time or
memory) required to solve a problem or perform a task.

Time complexity, which refers to the amount of time an algorithm takes to produce a
result as a function of the size of the input.

Space Complexity, which refers to the total amount of memory space used by an
algorithm/program, including the space of input values for execution.

Calculate time complexity for factorial of given number.

s/e — the number of operations to be performed when we execute the given line.

freq — no.of times the given line will be executed.

Algorithm s/e freq total
int fact(int n) 0 - 0
{ 0 - 0

int 1, f; 2 1 2

=1 1 1 1

for(i=1; i<=n ;i++) |2 n+1 2n+2

f=f*i; 2 n 2n

return f; 1 1 1

3 0 - 0
4n+6

Time complexity = 4n+6 = O(n)
Space complexity:
Calculate time complexity for factorial of given number.
Code — Assume 100 Bytes
3 int variables — 3x4=12 Bytes
Total = 112 Bytes (Constant)
Space Complexity = O(1)
i OR may
3 ! a) |Explain selection sort algorithm with| L2 |CO2| SM
! | suitable example.
| | b) Discuss the importance of linear data|L2 |COl| 5M
| | |structures.

By
3 a) Explanation of Algorithm/Procedure — 3M

Suitable example - 2M

Ans: Selection sort is a simple sorting algorithm that works by repeatedly finding the
minimum element from the unsorted part of the array and placing it at the beginning.

Procedure:

1. Find the minimum element in the unsorted array: Iterate through the unsorted part
of the array to find the smallest element.

2. Swap the minimum element with the first element of the unsorted array: Place the
minimum element at the beginning of the unsorted part.

3. Repeat: Consider the array with the newly placed element as sorted and repeat
steps 1 and 2 for the remaining unsorted part until the entire array is sorted.
Example:

Let's say we have an array: [64, 25, 12, 22; 11}

Pass 1:

« Find the minimum element in the array (11) and swap it with the first element
(64).

» Array becomes: [11, 25, 12, 22, 64]

Pass 2:

+ Find the minimum element in the remaining unsorted array (12) and swap it with
the second element (25).

« Array becomes: [11, 12, 25, 22, 64]

Swapping
ready s

— r Min element
12

orted

b = ___ Position to hold
next min element

Pass 3:

+ Find the minimum element in the remaining unsorted array (22) and swap it with
the third element (25).

 Array becomes: [11, 12, 22, 25, 64]

—= Min elerment

.
11 j‘fzizz [j

Position to holg
next min element

Pass 4:

« Find the minimum element in the remaining unsorted array (25) and swap it with
the fourth element (25).

« Array becomes: [11, 12, 22, 25, 64]

11 {12 (22|25 |64

Sorted array

The array is now sorted!
Complexity of Selection Sort:

Time Complexity: O(n?) in all cases (best, average, and worst). This is because it
always iterates through » elements and performs comparisons.

Space Complexity: O(1) (constant), as it requires only a few additional variables
regardless of the input size.

3 b) Any Five important features of Linear Data Structures — SM

Ans: Linear data structures play a crucial role in orgahizing and managing data in
various applications and algorithms. They are fundamental in computer science and
are characterized by their sequential and ordered nature, where each element is

connected to its predecessor and successor.

1. Efficient Insertion and Deletion Operations:

Linear data structures such as arrays and linked lists offer efficient insertion and
deletion operations:

Arrays: In dynamic arrays, appending elements is O(1) on average (amortized), while
inserting or deleting elements from the middle requires shifting elements, which is
O(n). In contrast, in linked lists, insertion and deletion operations are O(1) if the

position is known.

Linked Lists: Singly linked lists offer efficient insertion and deletion at the beginning
and end of the list, making them suitable for scenarios where elements need to be
dynamically added or removed.

2. Ease of Access and Traversal:
Linear structures facilitate straightforward access and traversal of elements:

Arrays: Elements in arrays are accessed in constant time O(1) using their index. This
makes them ideal for scenarios where direct access to elements is required.

Linked Lists: Linked lists provide sequential access to elements through traversal,
which can be O(n) in the worst case, but efficient for forward and backward traversal

in doubly linked lists.

3. Dynamic Size Management:

Linear structures like linked lists can grow and shrink dynamically:

Arrays: Static arrays have fixed sizes, but dynamic arrays (like in many programming
languages) can resize dynamically as elements are added or removed.

Linked Lists: Linked lists can easily accommodate varying numbers of elements by
allocating memory dynamically as nodes are added or freed when nodes are removed.

4. Versatility in Implementation:
Linear data structures can be adapted for various applications and algorithms:

Stacks and Queues: Implemented using arrays or linked lists, they provide specific
behavior (Last-In-First-Out for stacks, First-In-First-Out for queues) crucial in
algorithms like depth-first search (DFS) and breadth-first search (BFS).

5. Foundation for Advanced Data Structures:
Linear structures serve as building blocks for more complex data structures:

Trees and Graphs: Trees (like binary trees) and graphs (like adjacency lists) often
use arrays or linked lists to store and manage nodes and edges, providin g structured
relationships between elements.

Hash Tables: Hash tables, which use arrays combined with hashing techniques, rely
on efficient access and storage principles from linear structures.
UNIT-II
4 'a) Develop pseudo code to print elemen's of | L3]CO3] 5M
hnked list in reverse order. | |
'b) Discuss the following operatio;s jn| L2 |
circular linked list: o

I Insert an element
1. Delete an element ?

Scheme: 4 a) Pseudocode — 5SM

Ans: To print the elements of a linked list in reverse order, we can use a recursive
approach. The idea is to traverse the list to the end and then print the elements during
the unwinding phase of the recursion.

Here is the pseudocode for printing the elements of a singly linked list in reverse
order:

Pseudocode for Recursive Approach
Function printReverse(node):

If node is NULL:

Return
End If
// Recurse to the next node
printReverse(node.next)
// Print the current node's data during the unwinding phase
Print node.data
End Function
// Driver code to call the function
Function main():
head = Initialize the linked list with some values
// Call the recursive function starting from the head
printReverse(head)
End Function
Explanation:

1. Base case: _

If the head is null, it means we've reached the end of the linked list (or it was empty to
begin with). So, we simply return. '

2. Recursive call:

We make a recursive call to the same function, but with the next node as the
argument. This allows us to traverse the entire linked list until we reach the end.

3. Print data: £

After returning from the recursive call, we print the data of the current node. Since the
last recursive call returns first, this ensures the elements are printed in reverse order.

4 b) Insertion — 2M Deletion — 3M

Ans: Insertion operations in a circular linked list can be performed at different
positions: at the beginning, at the end, or at a specific position within the list. In a
circular linked list, the last node points back to the first node, creating a circular
structure. Here’s a detailed explanation of the insertion operations:

1. Insertion at the Beginning
To insert a node at the beginning of a circular linked list, you need to:

I. Create a new node.

2. Update the new node to point to the current head.
3. Update the last node to point to the new node.
4. Set the head to the new node.

[
[l paxtEl —)
RRZad Heing |

i

i ;-»]_“i } next |—'- ! 2 {nex*! et P%‘_l-ﬂn:;-}——l*—m“

{
Pmodivas

2. Insertion at the End
To insert a node at the end of a circular linked list, you need to:

1. Create a new node.

2. Traverse to the last node.

3. Update the last node's next pointer to the new node.
4. Set the new node's next pointer to the head.

HEAD

new link hew Nodw
»

temp : pir

ptr -> next = head

old link temp -> next = ptr

new link
3. Insertion at a Specific Position
To insert a node at a specific position in a circular linked list, you need to:

Create a new node.

Traverse to the node just before the desired position.

Update the new node's next pointer to the next node in the sequence.
Update the previous node's next pointer to the new node.

el ool - v

In a circular linked list, deletion operations can be performed at various positions: at
the beginning, at the end. or at a specific position.

e Deletion at the Beginning:

» If the list is empty, print a message and return.

+ If the list has only one node, set head to NULL.
. Otherwise, traverse to the last node, update its next pointer to point to the
second node, and update head to the second node.

e Deletion at the End:

o Ifthe list is empty, print a message and return.
« Ifthe list has only one node, set head to NULL.
. Otherwise, traverse to the second last node, update its next pointer to point to

the head.
¢ Deletion at a Specific Position:

. If the list is empty, print a message and return.

« Ifthe position is 1, call the deleteAtBeginning function.

. Otherwise, traverse to the node just before the desired position, update its next
pointer to skip the node to be deleted, and point to the node after the deleted

node.
« Ifthe position is out of range, print an error message.

"' OR

;

g 5 ; a) | Compare singly linked list and doubly | L2 |CO1| SM
|| linked list. |

| . e __

j | b) | Explain the array implementation of list| L2 {COl| 5M
s j in detail.

Scheme: 5 a) Any 5 Comparisons — 5SM

Ans: Introduction to Singly linked list : A singly linked list is a set of nodes where
each node has two fields ‘data’ and ‘link’. The ‘data’ field stores actual piece of

information and ‘link’ field is used to point to next node.

Head

A)| = _)[C 3 o — nuLL
Data Next _
Introduction to Doubly linked list : A Doubly Linked List (DLL) contains an
extra pointer, typically called previous pointer, together with next pointer and data
which are there in singly linked list.

Head —— Next . Next

Raxt
= NULL
T = =kl [10 [T
NULL ;

Frev Frev Prev

Prev

Singly linked list (SLL)

SLL nodes contains 2 field -data field
and next link field.

In SLL, the traversal can be done using
the next node link only. Thus traversal
is possible in one direction only.

The SLL occupies less memory than
DLL as it has only 2 fields.

Complexity of insertion and deletion at
a given position is O(n).

Complexity of deletion with a given
node is O(n), because the previous
node needs to be known, and traversal
takes O(n).

We mostly prefer to use singly linked
list for the execution of stacks.

When we do not need to perform any
searching operation and we want to
Save memory, we prefer a singly linked
list. |

A singly linked list consumes less
memory as compared to the doubly
linked list.

Singly linked list is less efficient.

It is preferred when we need to save
memory and searching is not required
as pointer of single index is stored.

Doubly linked list (DLL)

DLL nodes contains 3 fields -data field, a
previous link field and a next link field.

AT T BT BT T

In DLL, the traversal can be done using the
previous node link or the next node link.
Thus traversal is possible in both directions
(forward and backward).

The DLL occupies more memory than SLL

as it has 3 fields.

Complexity of insertion and deletion at a
given position is O(n / 2) = O(n) because
traversal can be made from start or from
the end.

Complexity of deletion with a given node
is O(1) because the previous node can be
accessed easily.

We can use a doubly linked list to execute
heaps and stacks, binary trees.

In case of better implementation, while
searching, we prefer to use doubly linked
list.

The doubly linked list consumes more
memory as compared to the singly linked
list.

Doubly linked list is more efficient.
When memory is not the problem and we
need better performance while searching,
we use doubly linked list.

5 b) Sophisticated explanation of list - SM
Ans: Array Implementation of List ADT

An array-based list is an implementation of the List ADT that stores list elements in
contiguous array positions. The index of the array relates to the position of the item
in the list. The implementation specifies an array of a particular maximum length,
and all storage is allocated before run-time.

The simplest method to implement a List ADT is to use an array that is a “linear list”
or a “contiguous list” where elements are stored in contiguous array positions. The
implementation specifies an array of a particular maximum length, and all storage is
allocated before run-time. It is a sequence of n-elements where the items in the array
are stored with the index of the array related to the position of the item in the list.

In array implementation, elements are stored in contiguous array positions (Figure
3.1). An array is a viable choice for storing list elements when the elements are
sequential, because it is a commonly available data type and in general algorithm

development is easy.

1 | First elemnent
2 Second element
. | st
curr
—
n+1
-) empty
Mexlength |

Figure 3.1 Array Implementatiqn of List ADT

List Implementation using arrays

In order to implement lists using arrays we need an array for storing entries —
listArray[0,1,2.....m], a variable curr to keep track of the number of array elements
currently assigned to the list, the number of items in the list, or current size of the
list size and a variable to record the maximum length of the array, and therefore of

the list — maxsize as shown in Figure 3.2.

listArray ur
| |) __
" arlaz| a3~ | ag unuse
- 0 1 2 n-1 m
e
siz : e ——

Figure 3.2Static Implementation of List ADT

Fix one end of the list at index 0 and elements will be shiftedas needed when an
element is added or removed, Therefore insert and delete operations will take O(n).

Insertion

What happens if you want (o insert an item at a specified position in an existing
array? The item originally at the given index must be moved right one position, and
all the items after that index must be shifted right (Figure 3.3).

/ Insert 2 here
R 2N 7 N

N
\5 T\ I\-f 2]] 1T 17

1 2 3 4 5 6 7 8

N

o

Figure 3.3 Insertion into a List

Let us consider a specific case of Insert operation. Insert (3. K. List) In this case, 3 is
the index or the point of Insertion, K is the element to be inserted & List is the list in
which insertion is to be done (Figure 3.4 (a) & Fj 1gure 3.4 (b)).

Size List

L | !x%ciLioloiRI []
% 3 u\\ 7 8
NNEany ‘L\ e —
J 4
Figure 3.4 (a)An Example of Insertion Into a List
Size

Te] [ifsTa a7
[xlelreTw e la &1

Il A Tx
1 WiE

7
g

Figure 3.4 (b)An Example of insertion into a List

Deletion from Lists

What happens if you want to remove an item from a specified position in an existing
array? There are two ways in which this can be done:

— Leave gaps in the array, i.e. indices that contain no elements, which in practice,
means that the array element has to be given a special value to indicate that it is
“empty”, or

— All the items after the (removed item’s) index must be shifted left similar to what
we did when we wanted to insert — only for insertion we shifted right.

Size List

f?LAIXlCIL;/J}/;fT
le[a[xTeTofalr [| T

Figure 3.5 {a) Deletion from a List

Size

A TxTeltToJalr] T]

Lelalx[eTola R] [T]

Figure 3.5 (b) Deletion from a List

[UNIT-III

expression to postfix expression.

b) | Explain implememanon of stack usmg L2 |CO1| 5M
pointers, _ J

Scheme: 6 a) Algorithm/Procedure — 5M
Ans:

Infix expression: The expression of the Jorm “a operator b” (a + b) i.e., when an
operator is in-between every pair of operands.

Postfix expression: The expression of the Jorm “a b operator” (ab+) i.e., When
every pair of operands is followed by an operator.

Examples:

Input: A+B*C+D

Output: ABC*+D+

Input: (A+B)-C*(D/E)) +F

Output: AB+CDE/*-F+

Algorithm to Convert Infix Expression to Postfix Expression

This algorithm utilizes a stack to manage operators and their precedence during the
conversion process.

Input: Infix expression
Output: Postfix expression

1. Initialize: Create an empty stack (opstack) and Create an empty string (postfix).

2. Scan the infix expression from left to right:

« For each character:

' 6 | a) | Develop algorithm to convert infix L3 CO3| 5M |

ettt e 5 e et T ne

o If operand: Append it to the postfix string.
o If left parenthesis: Push it onto the opstack.
o Ifright parenthesis:

» Pop operators from the opstack and append them to the postfix string
until a left parenthesis is encountered.

» Pop and discard the left parenthesis.

o If operator: :
= While the top of the opstack has an operator with higher or equal
precedence and is not a left parenthesis, pop the operator and append it
to the postfix string.

= Push the current operator onto the opstack.
3. After scanning the entire infix expression:

» Pop all remaining operators from the opstack and append them to the postfix
string.

4. Return the postfix string.

Additional Notes:

= Operator precedence 1s crucial. Define a function to compare the precedence
ol operators.

= Common operators and their precedence: * > * / > + -
= Use parentheses to override the default precedence.
Example:
Infix expression:a+b*c-d/e

Postfix expression: abc*+d/e-

6 b) Sophisticated explanation of Stack using linked list - SM

Ans: Implementing a stack using pointers typically involves using a singly linked
list. Each node in the linked list represents an element in the stack, and the top of the
stack is represented by a pointer to the first node.

Stack Operations:

push(): Insert a new element into the stack i.e just insert a new element at the
beginning of the linked list.

pop(): Return the top element of the Stack i.e simply delete the first element from the
linked list.

peek(): Return the top element.

display(): Print all elements in Stack.

Here's how you can implement a stack using pointers in C:

Explanation:

« Node Structure:

Each node contains a data field to store the element and a next pointer to point to the
next node in the stack.

o Top Pointer:
A pointer top is used to keep track of the topmost element of the stack. Initially, it is
set to NULL to represent an empty stack.

Push Operation:
o Create a new node with the given data.
» Set the next pointer of the new node to point to the current top.

« Update the top pointer to point to the new node.
Pop Operation:

« Check if the stack is empty. If so, return an error.

» Store the top node in a temporary variable.

« Update the top pointer to point to the next node.

« Return the data from the temporary node and free its memory.

Peek Operation:
» Check if the stack is empty. If so, return an error.

« Return the data of the top node without removing it.

33}
4y top ‘ [Intinl Stack Having Theee elemment
g 4800 & ¥ i And top have address 4800
i2z) 5 ;
s o
[|
44
) i . , :
H SR i SRR APEIE First cieate a temg aode and ansigr 341

! inte data fekd and top in kok flekd
(AN i fast assign temp asSYN iNio top!

top :
| 480D .
. 2

11

Fopthree eiement
tOp femp = top

top = top-~link
5000 teng shok = NULL |
ermp;

i1

Advantages of using pointers:

» Dynamic memory allocation: The stack can grow or shrink dynamically as
needed.

« Efficiency: Push and pop operations have a time complexity of O(1), making
them very fast.

OR

7 ;a) I-xp]am push() and pup() functions of L2 ’COI 5M
'stack data structure with drray*
1mplem<nt‘atmn

| 'b) Describe tilc'pmccs» of ualuatmg post] L2 (,O'%, SM

. | fix expression using siack.]
L L o I e LG L e i e ; | sl i far

—

| PUSSARISEE IS |

Scheme: 7 a) push() operation — 3M
pop() operation — 2M
Ans: Stack is a linear data structure which follows LIFO principle.

Implement Stack Operations using Array:

Push Operation in Stack:

Adds an item to the stack. If the stack is full, then it is said to be an Overflow
condition.

Algorithm for Push Operation:

* Before pushing the element to the stack, we check if the stack is full.

o Ifthe stack is full (top == capacity-1), then Stack Overflows and we cannot insert
the element to the stack.

o Otherwise, we increment the value of top by 1 (top = top + 1) and the new value is
inserted at top position.

o The elements can be pushed into the stack till we reach the capacity of the stack.

Pop Operation in Stack:
Removes an item from the stack. The items are popped in the reversed order in
which they are pushed. If the stack is empty, then it is said to be an Underflow

condition.

Algorithm for Pop Operation:
« Before popping the element firom the stack, we check if the stack is empty.
o If the stack is empty (top == -1), then Stack Underflows and we cannot remove

any element from the stack.
o Otherwise, we store the value at top, decrement the value of top by 1 (top = top —
1) and return the stored top value. '

Push Pop

e @ £
Stack e C |

Data Structure B | B mEaw
| A A |

7 b) Sophisticated explanation with an example — SM
Ans:
A stack data structure can be used to evaluate postfix expressions. Here's the
process:
1. Create an empty stack: To store operands.
Iterate through the expression: Left to right.
Check the character: If it's an operand or operator.

Operands: Push the operand onto the stack.

Operators: Pop two elements from the stack, perform the operation, and push the
result back onto the stack.

6. End of expression: The top element of the stack is the final answer.

oo

Example for Evaluation of Postfix Expression
Let's see an example to better understand the algorithm:

Expression: 456*+

Step Input Operation Stack Calculation
Symbol

1. 4 Push 4

2. 5 Push 4,5

3. 6 Push: 4,5,6

4. " Pop(2 elements) 4 5%6=30
& Evaluate

5. Push result(30) 4,30

6. + Pop(2 elements) Empty 4+30=34
& Evaluate

7. Push result(34) 34

8, No-more elements(pop) Empty 34(Result)

8 | a) Explain aboul wray implementation of L2 [CO1]

queue.

'b) What ¢
:ad\famagc of i;

| i
e

UNIT-IV

aucue” What is| L2 |

i

| queue? Demoic ate with a scenario.

s gueue over linear |

MY SN

Scheme: 8 a) Sophisticated explanation of queue using array— 5M

Ans: A queue is a linear data structure that follows the First-In-First-Out (FIFO)
principle. where the first element added to the queue will be the first one to be

removed.

(A)

Initailly the queue is empty

front=-1
rear=-1

S s s R b

Implementing a queue using an array involves using an array to store the elements of

the queue and two pointers (indices) to keep track of the front and rear of the

queue. Here's a breakdown of the concept:

Basic Idea:

. Array: An array of fixed size is used to store the queue elements.

« Front Pointer: Points to the index of the first element (front) of the queue.

« Rear Pointer: Points to the index of the last element (rear) of the queue.
Operations:

« Enqueue (Adding an element):
o Check if the queue is full (rear = array size - 1). If full, overflow occurs.
o Increment the rear pointer.

o Insert the new element at the position pointed to by the rear pointer.
« Dequeue (Removing an element): '

o Check if the queue is empty (front > rear). If empty, underflow occurs.
o Retrieve the element at the position pointed to by the front pointer.
o Increment the front pointer.
o Return the retrieved element.
« Peek (Accessing the front element):

o Check if the queue is empty.

o Return the element at the position pointed to by the front pointer without
removing it.

« isEmpty():
o Check if front > rear. If true, the queue is empty.
o isFull():- '
o Check if rear = array size - 1. If true, the queue is full.
B (8) ()
Initallly the queue Is empty Endueue 2 Engueue 3
front = -1 ront =
ee-a [1]]| (21 1 1 1 =117 T]
[} 1 2 3 o 1 2 3 o 1 2 3
ﬁre.r =0 - ﬁrem' =1
(E)
o Dequeue 2 and shift all
. Enqueue 1 elements to left by 1 position and make deleted eilement as 0
ront = front=0
e==[T-T.-T 1] =|s]:]o] |
o 1 2 3 o 3 2 3

Implementing queue using array

8 b) Definition — 1M
Advantages - 2M
Scenario - 2M

Ans: A Circular Queue is an extended version of 2 normal queue where the last
element of the queue is connected (o the first clement of the queue.

Advantages of Circular Queue

1. Efficient Space Utilization: Unlike a linear queue implemented with arrays, a
circular queue can reuse the space of dequeued elements, preventing the need
for shifting elements and avoiding overflow when there is still available space.

. Constant Time Operations: Both enqueue and dequeue operations can be
performed in O(1) time complexity.

3. Fixed Size: It can be implemented with a fixed size, making it predictable in

terms of memory usage.

(8]

Example
Let's illustrate a circular queue with a simple example:
fnitial Setuy

* Size of'the circular queue: 5
* The queue is empty initially.

Oviosists
1. Enqueuel,2,3
Front: 0, Rear: 2
Queue: [1,2,3, ,]
2. Dequeue
Dequeued element: 1
Front: I, Rear: 2

Queue: [_, 2,3, |,]

3. Enqueue4,S
Front: 1, Rear: 4
Queue: [,2,3,4,3]
4. Dequeue
Dequeued element: 2
Front: 2, Rear: 4
Queue: [, ,3,4,5]
5. Enqueue 6
Front: 2, Rear: 0 (wrap around)
Queue: [6, _, 3.4, 3]
6. Enqueue 7
Front: 2, Rear: 1 (wrap around)
Queue: 6,7, 3,4, 3]

Explanation

« When the queue reaches the end of the array and there is still
the beginning (due to dequeued elements), the rear pointer wraps

beginning of the array.

available space at
around to the

. This prevents wasted space and makes full use of the array, ensuring efficient

space utilization.

A circular queue is particularly useful in scenarios where the size of the queue is
fixed, and efficient utilization of the available space is crucial. It avoids the need for
shifting elements, making enqueue and dequeue operations consistently efficient.

OR

9 | a) |Find the list of elements in the queue
with following operations in sequence:
insert(10), insert(20), delete, insert(30),

.| |insert(40), delete. Assume initially queue

|is empty.

L3

CO3

SM

b) | Discuss about pointer implementation of
queue.

L2

col

SM

Scheme: 9 a) Showing Queue contents for every operation with explanation — 5M

Ans: A queue is a linear data structure that follows the First-In-First-OQut (FIFO)
principle. It operates like a line where elements are added at one end (rear) and
removed from the other end (front).

Let's perform the given sequence of operations on an initially empty queue and find
the list of elements after each operation.

0. Initial State

e Queue: []

I. insert(10):
o Queue: [10]
2. insert (20):
o Queue: [10, 20]
3. delete():
o Removed element: 10
o Queue: [20]
4. insert(30):
o Queue: [20, 30]
5. insert(40):
¢ Queue: [20, 30. 40]
6. delete():
o Removed element: 20
o Queue: [30, 40]

Final List of Elements in the Queue
* Queue: [30, 40]

So, after performing the sequence of operations, the final list of elements in the queue
is [30, 40].

9 b) Sophisticated explanation of queue using linked list — 5M
Ans:

A queue is a linear data structure that follows the First In, First Out (FIFO) principle,
which means that the element which is inserted first in the queue will be the first one
to be removed from the queue. A good example of a queue is a queue of customers
purchasing a train ticket, where the customer who comes first will be served first,
A linked queue is shown here:

Operation on Linked Queue

Each node of a linked queue consists of two fields: data and next (storing address of
next node). The data field of each node contains the assigned value, and the next
points to the node containing the next item in the queue.
A linked queue consists of two pointers, i.e., the front pointer and the rear pointer. The
front pointer stores the address of the first element of the queue, and the rear pointer
stores the address of the last element of the queue.
Insertion is performed at the rear end, whereas deletion is performed at the front end of
the queue. If front and rear both point to NULL, it signifies that the queue is empty.

The two main operations performed on the linked queue are:
 Insertion

» Deletion

Insertion

Insert operation or insertion on a linked queue adds an element to the end of the queue.
The new element which is added becomes the last element of the queue.

Algorithm to perform Insertion on a linked queue:

1. Create a new node pointer.
ptr = (struct node *) malloc (sizeof(struct node));

2. Now, two conditions arise, i.e., either the queue is empty, or the queue contains at
least one element.

3. If the queue is empty, then the new node added will be both front and rear, and the
next pointer of front and rear will point to NULL. .

*ptr - > data = val,
if (front = NULL)

{
front = ptr;
rear = pir;

front - > next = NULL;
rear - > next = NULL;

}

4. Tf the queue contains at least one element, then the condition front == NULL
becomes false. So, make the next pointer of rear point to new node ptr and point the
rear pointer to the newly created node ptr

rear -> next = pir;
rear = pix;

5. Hence, a new node(element) is added to the queue.

Deletion

Deletion or delete operation on a linked queue removes the element which was first
inserted in the queue, i.e., always the first element of the queue is removed.
Steps to perform Deletion on a linked queue:

1. Check if the queue is empty or not.

2. If the queue is empty, i.e., front==NULL, so we just print ‘underflow’ on the screen
and exit.

3. If the queue is not empty, delete the element at which the front pointer is pointing.
For deleting a node, copy the node which is pointed by the front pointer into the
pointer ptr and make the front pointer point to the front’s next node and free the
node pointed by the node ptr. This can be done using the following statement:

*ptr = front;
front = front -> next;
free(ptr);

UNIT-V |
e T — l

| 101) Let us consider a simple hash function as| L4 (664l SM |

{

key mod 117 and sequence of keys as J
J 50, 700, 76, 85, 92, 73, 101, 45, 62, 99| ;

: _ s
with table size 11. Show how these keys |
will be stored, 1f we apply quadratic |

- 5 o~ Vo w |
probing in case of collision.

{
!

| S] |

' b) Discuss about insertion and deletion of an L2 {CO4| 5M
element in binary search tree. |

| |
: 1

Scheme: 10 a) Construction of Hash Table with quadratic probing — SM
Ans:
Hashing in data structures is a technique used to efficiently store and retrieve data.

Hashing is the process of converting a given key into another value. A hash
function is used to generate the new value according to a mathematical algorithm. The
result o a hash function is known as a hash value or simply, a hash.

Let us consider a simple hash function as "key mod 11" and sequence of keys as 50,
700, 76, 85, 92, 73, 101, 45, 62, 99 with table size 11. show how these keys will be
stored, if we apply quadratic probing in case of collision.

— [l 0

o e s

Hash

Key Function Hash

Quadratic probing is a collision resolution technique in open addressing hash tables. When a
collision occurs, it searches for the next available slot using a quadratic function of the form:

hash(key,i)=(h(key)+c;-i+c+i*) mod m
where:

« h(key) is the original hash function.

« iis the probing attempt (0, 1, 2, ...).

. ¢l and ¢2 are constants (typically set to 1).

« m is the table size. '

Given:

« Hash function: h(key)=key mod 11

« Table size: 11
« Sequence of keys: 50, 700, 76, 85, 92, 73, 101, 45, 62, 99

Quadratic Probing Steps
Let's insert each key step-by-step:
1. Insert S0:
h(50)=50 mod 11=6

o Slot 6 is empty. Place 50 at index 6. |
of Table: [, , , _»_» 50, ., _,]
2. Insert 700:

h(700)=700 mod 11=7

o Slot 7 is empty. Place 700 at index 7.
o Table: L, s s _s_>_> 509 700> i _]
3. Insert 76:

h(76)=76 mod 11=10

o Slot 10 is empty. Place 76 at index 10.

4. Insert 85:

h(85)=85mod 11=8

o Slot 8 is empty. Place 85 at index 8.
o Table:[, , , , ., 50,700, 85, _, 76]
5. Insert 92:

h(92)=92 mod 11=4

o Slot 4 is empty. Place 92 at index 4.
o Table:[, , , ,92, 50,700, 85, _, 76]
6. Insert 73:

h(73)=73 mod 11=7

o Slot 7 is occupied (collision).
Quadratic probing: (7+i%)mod 11
= =1 (7+1*)mod 11=8(collision)
» i72:(742%)mod 11=11mod 11=0(empty)
o Place 73 at index 0.
o Table:[73. . , ,92, 50,700, 85, ,76]
7. Insert 101:

h(101)=101 mod 11=2

o Slot 2 is empty. Place 101 at index 2.
o Table: [73, , 101, _, 92, ., 50,700, 85, . 76]
8. Insert 45:

h(45)=45 mod 11=1

o Slot I is empty. Place 45 at index 1.
o Table: [73,45, 101, , 92, . 50. 700, 85. sl
9. Insert 62:

h(62)=62 mod 11=7

o Slot 7 is occupied (collision).

o Quadratic probing: (7+i%)mod 11
= =1 (7+1%)mod 11=8 (collision)
« i=2: (7+2)mod 11=11 mod 11=0 (collision)
» i=3: (7+3)mod 11=16 mod 11=5 (empty)

o Place 62 at index 5.

o Table: [73, 45,101, , 92, 62, 50, 700, 85, , 76]

10.Insert 99:

h(99)=99 mod 11=0

o Slot 0 is occupied (collision).

o Quadratic probing: (0+i*)mod 11
« i=1: (0+1%)mod 11=1 (collision)
« i=2: (0+2>)mod 11=4 (collision)
« i=3: (0+3%)mod 11 =9 (empty)
o Place 99 at index 9.
o Table: [73. 45, 101, _, 92, 62, 50, 700, 85. 99, 76]

Final Hash Table

The

final hash table after inserting all the keys using quadratic probing is:

Index: 0 1 2 34 5 6 7 8 9 10

Keys: 73 45 101 _ 92 62 50 700 85 99 76
10 b) Insertion operation — 2M Deletion operation — 3M
Ans:

A Binary Search Tree (BST) is a hierarchical data structure in which each node has at
most two children, referred to as the left child and the right child.

For
-

L

cvery node in the BST:
All nodes in its left subtree have values less than the node's value.
All nodes in its right subtree have values greater than the node's value.

This property holds recursively for all subtrees within the BST.

Insertion:

Start at the root: Begin the insertion process from the root node of the BST.

Comparison: Compare the value to be inserted with the value of the current node.

Traversal:

o Ifthe value is less than the current node's value, move to the left child.

If the value is greater than the current node's value, move to the right child.

o Repeat step 2 and 3 until you reach a leaf node (a node with no children).
Insertion: Insert the new node as a child of the leaf node you reached in the

previous step.

o

100 100

Deletion:

Deleting a node from a BST is slightly more complex than insertion, as it requires
maintaining the BST property (left child < parent < right child). There are three cases
to consider:

¢ Deleting a leaf node:

o Simply remove the node from the tree.
* Deleting a node with one child:

o Replace the node to be deleted with its child.
* Deleting a node with two children:
o Find the inorder successor of the node (the smallest value in the right subtree).
o Replace the node to be deleted with its inorder successor.
o Delete the inorder successor (Which will always be a leaf node or a node with
one child).
Case1:Delete A Leaf Node In BST

@ @ Assign Node 10 Nuli
A
o (40 @ @ {20}

Deleted Node 20

Delete Node 20

Deletion In BST

Case 3 : Delete A Node With Both Children In BST

After Deletion

pelete Node 50

Deletion In BST
Time Complexity:

Insertion:

The time complexity of insertion in a BST is O(h), where h is the height of the
tree. In the worst case, where the tree is skewed, the height can be equal to the
number of nodes (n), resulting in O(n) complexity. However, in a balanced BST, the
height is O(log n), leading to O(log n) insertion time. ‘

Deletion:

Similar to insertion, the time complexity of deletion in a BST is also O(h). In a

balanced BST, this becomes O(log n).

OR
11] a) [Define Binary search tree. Construct| L3 CO4! 5M
binary search tree with following keys:
1 55,45,65.40,60,70,66,99.2,34
b) | Assume a table has 2 siots. Using 14 |CO4| 5M
chaining, insert the following elements
into the hash table. ‘ 1
5@,66,1 8,72,43,65,6,17,10,5,64,16,71,
and 15 are inserted in the order. Consider
Hash function: h(k) = k mod m, where
m=8. |

L —

Scheme: 11 a) Definition — 1M Construction of BST — 4M
Ans:

A Binary Search Tree (BST) is a hierarchical data structure in which each node has at
most two children, referred to as the left child and the right child.

For every node in the BST:

« All nodes in its left subtree have values less than the node's value.

All nodes in its right subtree have values greater than the node's value.

« This property holds recursively for all subtrees within the BST.
/
Jﬁ\‘ 6 \\
0000
To construct a Binary Search Tree (BST) with the given keys in the order: 55, 45, 65,

40, 60, 70. 66, 99, 2, 34, we follow the BST property: for each node, the left child is
less than the node and the right child is greater.

Let's insert each key step-by-step:
Step-by-Step Insertion
1. Insert 55:

o Root: 55
2. Insert 45:

o 45 <55: Insert 45 as the left child of 55,

55
3
45

3. Insert 65:

* 05> 55: Insert 65 as the right child of 55.

/N
45 65

4. Insert 40:

* 40 < 55: Move left to 45.
* 40 <45: Insert 40 as the left child of 45,

55
s N
45 65
i
40
5. Insert 60:

* 60> 55: Move right to 65.
* 60 < 65: Insert 60 as the left child of 65.

6. Insert 70:

e 70> 55: Move right to 63.
e 70> 65: Insert 70 as the right child of 65.

7. Insert 66:

¢ 66> 55: Move right to 65.
o 66> 65: Move right to 70.
e 66 < 70: Insert 66 as the left child of 70.

8. Insert 99:

e 99> 55: Move right to 65.
¢ 99> 65: Move right to 70.
e 99> 70: Insert 99 as the right child of 70.

9. Insert2:

e 2 <55: Move left to 45.
e 2 <45 Move left to 40.
e 2 <40: Insert 2 as the left child of 40.

10. Insert 34

e 34 <55: Move left to 45.

e 34 <45: Move left to 40.

o 34 <40: Move left to 2.

o 34> 2:Insert 34 as the right child of 2.

&N

45 65

/ /N

40 60 70

4 R
2 66 99
\

34

11 b) Construction of Hash Table using chaining — 5M

Ans: Hashing in the data structure is a technique of mapping a large chunk of data into
small tables using a hashing function.

Hashing is the process of converting a given key into another value. A hash
function is used to generate the new value according to a mathematical algorithm. The
result of a hash function is known as a hash value or simply, a hash.

To insert the elements 56, 66, 18, 72, 43, 65, 6, 17, 10, 5, 64, 16, 71, and 15 into a
hash table using chaining with the hash function h(k)=k mod 8, we first compute the
hash values for each element and then place them into the corresponding bucket.

Here’s the step-by-step process:
I. Initialize the hash table: Since m=8, we create an array with 8 buckets (index 0 to 7.

Hash table: [[1,[1,[1,[1.[1,0,(1,01]

2. Compute hash values and insert elements:
o For 56: h(56)=56 mod 8=(
Bucket 0: [56]

o For 66: h(66)=66 mod 8§=2
Bucket 2: [66]

o For 18: h(18)=18 mod 8=2
Bucket 2: [66,18]

o For 72: h(72)=72 mod 8=0
Bucket 0: [56,72]

o For 43: h(43)=43 mod 8=3
Bucket 3: [43]

o For 65: h(65)=65 mod 8=1
Bucket 1: [65]

o For 6: h(6)=6 mod 8=6
Bucket 6: [6]

o}

For 17: h(17)=17 mod 8=1
Bucket 1: [65,17]

For 10: h(10)=10 mod 8=2
Bucket 2: [66,18,10]

For 5: h(5)=5 mod 8=5
Bucket 5: [5]

For 64: h(64)=64 mod 8=0
Bucket 0: [56,72,64]

For 16: h(16)=16 mod 8=0
Bucket 0: [56,72,64,16]

For 71: h(71)=71 mod 8=7
Bucket 7: [71]

For 15: h(15)=15 mod 8=7
Bucket 7: [71,15]

3. Final hash table with chaining:

Index | Elements
0 [56. 72,64, 16]
1 (65,17
2 166, 18, 10
Hash table: 3 143
4 |
5 |5
6 |
|

