PVP 23

Code: 23ME3401

II B.Tech - II Semester - Regular Examinations - MAY 2025

MANUFACTURING PROCESSES (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.
- BL Blooms Level

CO – Course Outcome

PA	RT	- A
----	----	-----

		BL	CO
1.a)	Define casting and list its advantages.	L1	CO1
1.b)	What are the different types of patterns used in casting?	L1	CO1
1.c)	What are the different types of welding processes?	L1	CO1
1.d)	Differentiate between TIG and MIG welding.	L1	CO3
1.e)	Define bulk forming and give two examples.	L1	CO1
1.f)	What is recrystallization and how does it affect metal properties?	L1	CO1
1.g)	Define blanking and piercing.	L1	CO1
1.h)	What is spring back and how can it be minimized?	L1	CO1
1.i)	Define Additive Manufacturing.	L1	CO1
1.j)	List any four advantages of Additive Manufacturing.	L1	CO1

		PART – B			
			BL	СО	Max. Marks
		UNIT-I			
2	a)	Explain the steps involved in making a casting.	L2	CO1	5 M
	b)	Discuss different types of molding processes and their applications.	L2	CO2	5 M
	1	OR			
3	a)	Describe the centrifugal casting process with a neat sketch.	L2	CO2	5 M
	b)	Illustrate the working of Cupola furnace with a neat sketch.	L2	CO2	5 M
		UNIT-II		1	1
4	a)	Discuss the importance of pre-heating and post-heating in welding.	L2	CO1	5 M
	b)	Illustrate the working of Submerged Arc Welding process with a neat sketch.	L2	CO3	5 M
	1	OR			
5	a)	Explain the Electron Beam Welding process and its advantages.	L2	CO3	5 M
	b)	What are the differences between soldering, brazing and welding?	L2	CO3	5 M
	1	UNIT-III	·		
6	a)	Explain the process of forging and its types.	L2	CO4	5 M
	b)	What is strain hardening? How is it removed?	L2	CO4	5 M

		OR			
7	a)	Discuss different types of extrusion	L2	CO4	5 M
		processes and their applications.			
	b)	Explain the defects in forging and their	L2	CO4	5 M
		remedies.			
		UNIT-IV			
8	a)	Explain the process of stretch forming	L2	CO4	5 M
		with applications.			
	b)	Discuss different types of presses used in	L2	CO4	5 M
		sheet metal forming.			
		OR			
9	a)	What is high-energy rate forming?	L2	CO1	5 M
		Explain its importance.			
	b)	Illustrate the spinning process along with	L2	CO4	5 M
		applications.			
		UNIT-V			
10	a)	What are the different types of materials	L2	CO1	5 M
		used in Additive Manufacturing?			
	b)	Explain the working of Electron Beam	L2	CO5	5 M
		Melting (EBM) in Additive			
		Manufacturing.			
		OR			
11	a)	What are the challenges and limitations	L2	CO1	5 M
		of Additive Manufacturing?			
	b)	Discuss the applications of Additive	L2	CO1	5 M
		Manufacturing in the aerospace and			
		medical fields.			

Page 3 of 3

SCHEME OF VALUATION

Code: 23ME3401

PVP23

II B.Tech. - II Semester- Regular Examinations- May 2025

MANUFACTURING PROCESSES (MECHANICAL ENGINEERING)

Duration: 3 hours

Max Marks: 70

PART-A

		BL	CO
1.a)	Define casting and list its advantages.	L1	CO1
	Casting definition: 1M, Advantages of casting (any two): 1M		
1.b)	What are the different types of patterns used in casting?	L1	CO1
	Name any four patterns: 2M		
1.c)	What are the different types of welding processes?	L1	CO1
	Name any four welding processes: 2M		
1.d)	Differentiate between TIG and MIG welding.	L1	CO3
	Any two differences between TIG & MIG welding: 2M		
1.e)	Define bulk forming and give two examples.	L1	CO1
	Definition of bulk forming: 1M		
	Two examples for bulk forming: 1M		
1.f)	What is recrystallization and how does it affect metal properties?	L1	CO1
	Recrystallization: 1M		
	Effect of recrystallization on metal properties: 1M		-
1.g)	Define blanking and piercing.	L1	CO1
	Definition of blanking: 1M		
	Definition of piercing: 1M		
1.h)	What is spring back and how can it be minimized?	L1	CO1
	Spring back: 1M		
	Minimizing spring back (Any two methods): 1M		
1.i)	Define Additive Manufacturing.	L1	CO1
	Definition of Additive Manufacturing: 2M		
1.j)	List any four advantages of Additive Manufacturing.	L1	CO1
	Listing any four advantages of Additive Manufacturing: 2M		

PART-B

			BL	СО	Max. Marks
		UNIT-I			
2	a)	Explain the steps involved in making a casting . Steps involved in making a casting: 5M	L2	CO1	5 M
	b)	Discuss different types of molding processes and their applications. Discussing any three molding processes with applications: 5M	L2	CO2	5 M
		OR			
3	a)	Describe the centrifugal casting process with a neat sketch . Describing centrifugal casting process: 3M	L2	CO2	5 M

		Sketch of centrifugal casting process: 2M			
	b)	Illustrate the working of Cupola furnace with a neat sketch.			
	-	working of Cupola furnace: 3M	L2	CO2	5 M
		Sketch of Cupola furnace: 2M			
		UNIT-II			
4	a)	Discuss the importance of pre-heating and post-heating in			
	ĺ,	welding.	1.0	001	C) (
		Importance of pre-heating in welding: 2.5M	L2	CO1	5 M
		Importance of post-heating in welding: 2.5M			
	b)	Illustrate the working of Submerged Arc Welding process			
		with a neat sketch.			
		Explaining Submerged Arc Welding process: 3M	L2	CO3	5 M
		Sketch of Submerged Arc Welding process: 2M			
		OR			
5	a)	Explain the Electron Beam Welding process and its			
-	-	advantages.			
		Explaining Electron Beam Welding process: 2M	L2	CO3	5 M
		Sketch of Electron Beam Welding process: 2M	22	005	5 11
		Advantages of Electron Beam Welding process: 1M			
	b)	What are the differences between soldering, brazing and			
		welding?	L2	CO3	5 M
		Differences between soldering, brazing and welding: 5M	DE	005	5 11
		UNIT-III			
6	a)	Explain the process of forging and its types.	1		
	(^u)	Explaining forging process: 2M	L2	CO4	5 M
		Explaining to ging process. 2W Explaining the types of forging: 3M	LL2	004	5 14.
	b)	What is strain hardening? How is it removed?			
		Explaining strain hardening: 3M	L2	CO4	5 M
		Removal of strain hardening: 2M	122	001	5 14
		OR		L	
7	a)	Discuss different types of extrusion processes and their			
		applications.			
		Any four types of extrusion processes: 4M	L2	CO4	5 M
		Applications: 1M			
	b)	Explain the defects in forging and their remedies.			
	-,	Explaining any four forging defects: 4M	L2	CO4	5 M
		Their remedies: 1M			
		UNIT-IV		I	
8	a)	Explain the process of stretch forming with applications.			
		Explaining stretch forming process: 2M	TO	001	
		Sketch of stretch forming process: 2M	L2	CO4	5 M
		Applications of stretch forming process: 1M			
	b)	Discuss different types of presses used in sheet metal forming.			
		Listing different presses used in sheet metal forming: 1M	L2	CO4	5 M
		Discussing any four presses: 4M			
		OR		•	
9	a)	What is high-energy rate forming? Explain its importance.			
		Explaining about high-energy rate forming: 3M	L2	CO1	5 M
		Importance of high-energy rate forming: 2M			and the second
	b)	Illustrate the spinning process along with applications.			
		Explaining the spinning process: 2M	TO	001	
	1		L2	CO4	5 M
		Sketch of spinning process: 2M			

		UNIT-V			
10	a)	What are the different types of materials used in Additive Manufacturing? Any five materials: 5M	L2	CO1	5 M
	b)	Explain the working of Electron Beam Melting (EBM) in Additive Manufacturing. Working of EBM in Additive Manufacturing: 3M Sketch of Electron Beam Melting: 2M	L2	CO5	5 M
		OR			
11	a)	What are the challenges and limitations of Additive Manufacturing? Challenges of Additive Manufacturing: 2M Limitations of Additive Manufacturing: 3M	L2	CO1	5 M
-	b)	Discuss the applications of Additive Manufacturing in the aerospace and medical fields. Applications of AM in the aerospace field: 2.5M Applications of AM in the medical field:2.5M	L2	CO1	5 M

KEY/ SOLUTIONS

Code: 23ME3401

PVP23

II B.Tech. – II Semester- Regular Examinations- May 2025

MANUFACTURING PROCESSES (MECHANICAL ENGINEERING)

Duration: 3 hours

Max Marks: 70

PART-A

 Define casting and list its advantages. Casting is a manufacturing process in which a liquid material is usually poured into a mold, which contains a hollow cavity of the desired shape, and then allowed to solidify. The solidified part is also known as a casting, which is ejected or broken out of the mold to complete the process. Advantages of casting: (Any two) Molten material flows into any small section in the mould cavity and as such any intricate shapes, internal or external, can be made with the casting process. It is possible to cast practically any material, be it ferrous or non-ferrous. The necessary tools required for casting moulds are very simple and inexpensive. As a result, for trial production or production of a small lot, it is an ideal method. It is possible in casting process to place the amount of material where exactly required. As a result, weight reduction in design can be achieved. Castings are generally cooled uniformly from all sides and therefore they are expected to have no directional properties. There are certain metals and alloys which can only be processed by the casting and not by any other process like forging because of the metallurgical considerations. Casting of any size and weight, even up to 200 tons can be made. 					
What are1Arc V (Elect Weldi2Gas V3Resist4Solid- Weldi5Laser Beam	the different to Velding ric Arc ing) Velding tance Welding State ing and Electron Welding	 shielded Metal Arc Welding (SMAW / Stick Welding) Gas Metal Arc Welding (GMAW / MIG Welding) Gas Tungsten Arc Welding (GTAW / TIG Welding) Flux-Cored Arc Welding (FCAW) Submerged Arc Welding (SAW) Oxy-Acetylene Welding (OAW) Spot Welding Seam Welding Projection Welding (FRW) Ultrasonic Welding Explosion Welding Laser Beam Welding (LBW) Electron Beam Welding (EBW) 			
	Casting is mold, whice The solidif to complete Advantage Molten intricate It is poss The neck result, fo It is poss As a result, fo The neck result, fo It is poss As a result to have p Castings to have p Casting What are Single Piec Pattern, Co Skeleton P What are 1 Arc W (Elect Weldi 2 Gas V 3 Resist 4 Solid- Weldi 5 Laser Beam	 Casting is a manufactur mold, which contains a h The solidified part is also to complete the process. Advantages of casting: (Molten material flows intricate shapes, intern It is possible to cast pr The necessary tools rearesult, for trial product It is possible in casting As a result, weight red Castings are generally to have no directional There are certain meta by any other process li Casting of any size and What are the different of Single Piece Pattern (Sol Pattern, Cope and Drag F Skeleton Pattern. What are the different of Skeleton Pattern. Skeleton Pattern. What are the different of Skeleton Pattern. Skeleton Pattern. What are the different of Skeleton Pattern. Skeleton Pattern. Skeleton Pattern Skeleton Skeleton Pattern Skeleton P			

	MIG Welding	TIG Welding				
	Metal inert gas (MIG) welding utilizes a consumable electrode that is continuously fed into the welding zone from a wire pool.	Tungsten inert gas (TIG) welding utilizes a non-consumable electrode (so it remains static and intact during welding).				
	The electrode itself melts down to supply necessary filler metal required to fill the root gap between base metals. So electrode acts as filler metal (no additional filler is required).	If required, filler metal is supplied additionally by feeding a small diameter filler rod into the arc. So filler metal is supplied separately.				
	Composition of electrode metal is selected based on parent metal. Usually, metallurgical composition of electrode metal is similar to that of base metal.	Electrode is always made of tungsten with small proportion of other alloying elements (like thorium).				
	It is suitable for homogeneous welding. It cannot be carried out in autogenous mode welding as filler is applied inherently.	It is particularly suitable for autogenous mode welding. However, it can also be employed for homogeneous or heterogeneous mode by supplying additional filler.				
	The electrode-cum-filler for MIG welding comes in the form of a small diameter $(0.5 - 2 \text{ mm})$ and very long (several hundred meters) wire that is wound in a wire-pool.	TIG welding filler typically comes in the form of small diameter $(1 - 3 \text{ mm})$ and short length $(60 - 180 \text{ mm})$ rod.				
	Due to very large length, the filler electrode can be fed for a longer duration without replacement.	Due to short length, frequent replacement of filler is required. This interrupts the welding process unintentionally.				
	MIG welding is commonly carried out either in AC or in DCEP polarity so that electrode can be melted and deposited at a faster rate.	TIG welding is commonly carried out either in AC or DCEN polarity to increase electrode life.				
	Filler deposition rate is very high, so the process is highly productive.	Filler deposition rate is low. In this sense, it is not very productive.				
	MIG welding usually produce spatter. This causes loss of costly filler metal.	TIG welding is mostly free from spatter.				
	Quality and appearance of weld bead are not very good.	It can easily produce defect-free reliable joint with good appearance. TIG welding sometimes leads to				
	It does not lead to tungsten inclusion defect.	tungsten inclusion defect (occurred when a melted/broken part of the tungsten electrode gets embedded into weld bead).				
.e)	 e) Define bulk forming and give two examples. • Bulk forming, also known as bulk metal forming, is a metalworking process where raw material, typically in the form of a billet, slab, or rod, undergoes significant plast deformation to change its shape and cross-sectional area. • Examples of bulk forming processes include rolling, forging, extrusion, and w drawing. 					
l.f)	 What is recrystallization and how does it affect metal properties? Recrystallization of metals is a metallurgical process where deformed grains replaced by new, stress-free grains, which is typically achieved by heating the mabove a certain temperature. 					
	• This process significantly affects metal properties, primarily by restoring ductility reducing strength and hardness, and improving overall workability.					

	Blanking and piercing are sheet metal fabrication processes that utilize a punch and die to create desired shapes and holes, respectively. Blanking cuts out the desired shape from the sheet metal, with the remaining material as scrap. Piercing, on the other hand, removes the material from the sheet to create a hole, leaving the desired sheet metal as the final product.
1.h)	What is spring back and how can it be minimized?
	Spring back is a phenomenon in metal forming processes, especially in bending operations, where the metal tends to return partially to its original shape after the forming force is removed. It is caused by the elastic recovery of the material once the external force is no longer applied.
	Methods to Minimize Spring Back: (Any two methods)
	1. Over bending: Intentionally bend the material slightly beyond the desired angle so that after spring back, the part settles into the correct angle.
	2.Bottoming or Coining: A process where the punch presses deeply into the die cavity, stressing the material beyond its yield point across the entire cross-section, reducing spring back.
	3. Use of Appropriate Tooling: Use smaller die radii and sharper punch angles to help control the material flow and reduce elastic recovery.
	4. Material Selection: Choosing materials with lower yield strength and elastic modulus when possible can help reduce spring back.
	5. Heat Treatment: Applying heat during or after forming (such as stress relief annealing) can help to reduce residual stresses and minimize spring back.
	6.Finite Element Simulation: Predict spring back using simulation software and compensate for it in the die design.
1.i)	Define Additive Manufacturing.
	Additive Manufacturing (AM), commonly known as 3D printing, is a manufacturing process that creates three-dimensional objects by adding material layer by layer based on a digital model. Unlike traditional subtractive manufacturing methods, which remove material from a solid block (e.g., machining or milling), additive manufacturing builds up the object from the ground up/ bottom up approach.
1.j)	List any four advantages of Additive Manufacturing.
	• Design Flexibility : Complex and intricate designs that are difficult or impossible to achieve with traditional manufacturing can be easily produced.
	• Reduced Waste : Since material is added layer by layer, only the necessary amount is used, minimizing scrap and material waste.
	• Rapid Prototyping : Products can be quickly designed, tested, and modified, significantly speeding up the development cycle.
	• Customization: Items can be tailored to individual specifications (e.g., medical implants, footwear) without the need for retooling or special equipment.

	PART-B	

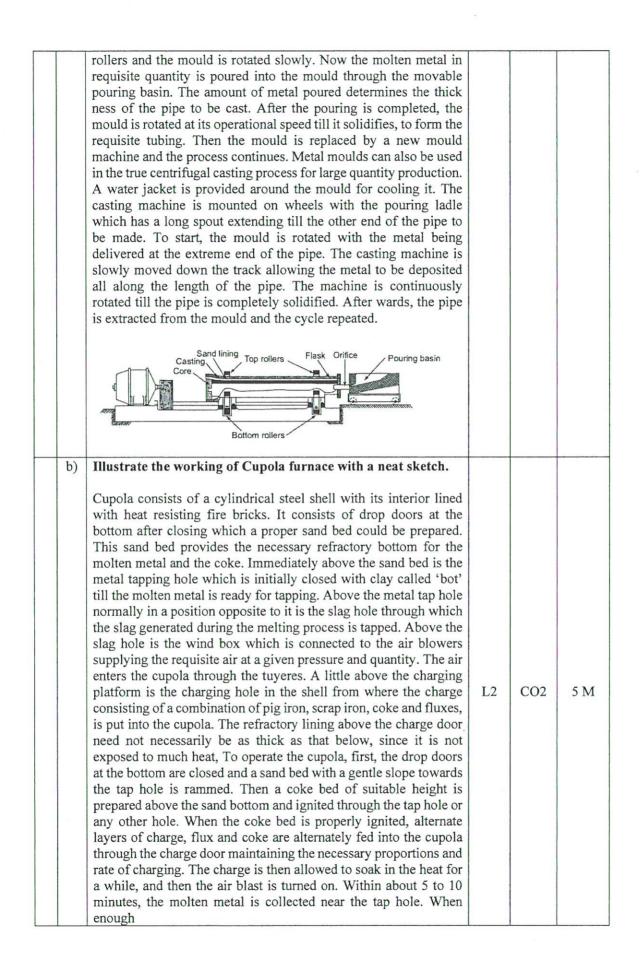
			BL	СО	Max. Marks
		UNIT-I			
	a)	Explain the steps involved in making a casting.			
		The casting process involves several key steps to produce a metal			
		part by pouring molten metal into a mold and allowing it to			
		solidify. Here are the main steps:			
		1. Pattern Making:			
		• A pattern is created to replicate the shape of the desired			
		casting.			
		 It is usually made of wood, plastic, or metal. 			
		 The pattern includes allowances for shrinkage and 			
		machining.			
		2. Mold Making:			
		• The pattern is used to create a mold cavity in sand or			
		another mold material.			
		• Molds can be expendable (sand) or permanent (metal).			
		• The mold includes features like the cavity, sprue, runners,			
		and risers to guide the molten metal.			
		3. Core Making (if needed):			
		• Cores are used to create internal cavities or complex			
		geometries in the casting.			
		 Made separately and placed inside the mold cavity before pouring. 			
		4. Melting and Pouring:	L2	CO1	5 M
	1	 The required metal is melted in a furnace. 	12		5 111
		 The molten metal is molecular a runnace. The molten metal is poured into the mold through the 			
		sprue and runners.			
		5. Cooling and Solidification:			
		• The molten metal cools and solidifies inside the mold,			
		taking the shape of the cavity.			
		• Cooling time depends on the size and complexity of the			
		casting and the type of metal used.			
		6. Shakeout:			
		• Once the metal has solidified, the mold is broken or			
		opened to remove the casting.			
		 For sand casting, this involves breaking the sand mold. 			
		7. Cleaning and Finishing:			
		 The casting is cleaned to remove sand, scale, and excess 			
		metal (e.g., from gates or risers).			
		Finishing processes like grinding, machining, or heat			
		treatment may be applied.			
		8. Inspection:			
		• The final casting is inspected for defects using visual			
		checks, dimensional measurements, or non-destructive			
\vdash	b)	testing Discuss different types of molding processes and their			an a
	b)	applications.			
			TO	000	C A C
		Green Sand Moulding:	L2	CO2	5 M
		Green sand is the moulding sand which has been freshly prepared			
		from silica grains, clay and mois ture. In a green sand mould, metal			

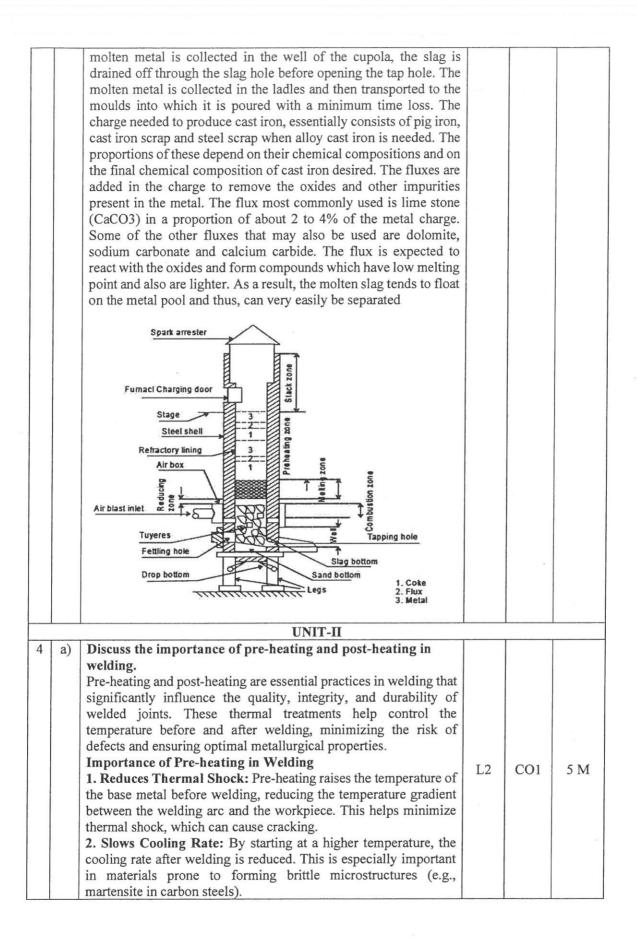
is poured immediately and the castings taken out. These are most commonly used and are adapted for rapid production whereas the moulding flasks are released quickly. They require less floor space as no storage is involved. As the mould is produ ced, the casting is prepared. Thus it is the least expensive of all. Also the tendency for hot tearing of the castings is less in green sand moulds. Mould erosion is common in these types of moulds. The permeability of these moulds should be properly controlled otherwise blow holes and gas inclusions are likely to form.

Dry Sand Moulds:

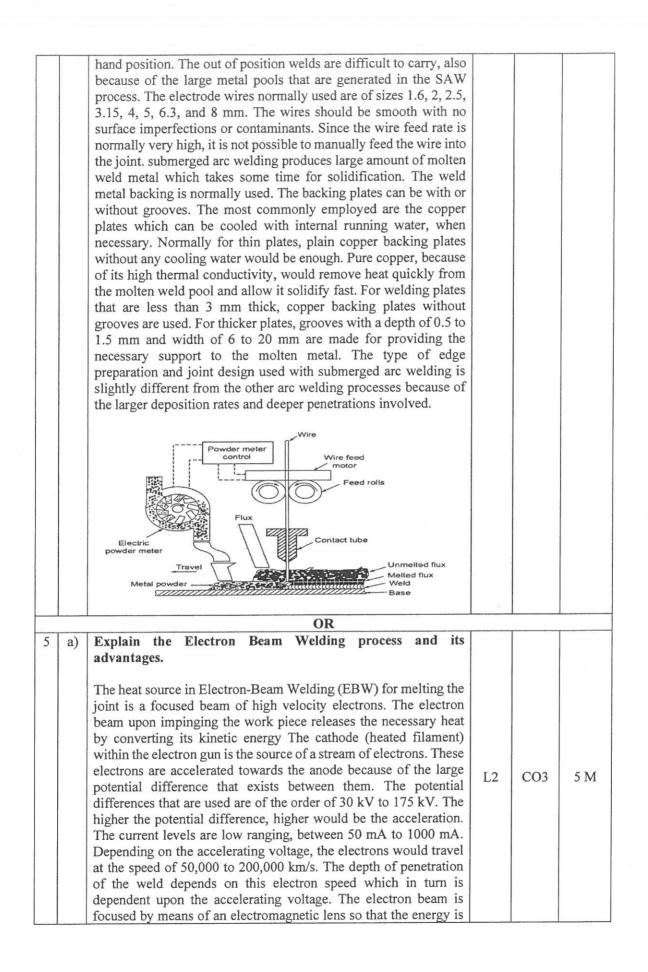
These are the green sand moulds which are completely dried by keeping in an oven from 150 to 350°C for

8 to 48 hours depending on the binders in the moulding sand. These moulds generally have higher strengths than the green sand mould and are preferred because they are less likely to be damaged during handling. These are generally used for medium to large castings. Better surface finish and dimensional accuracy can be achieved by dry sand mould. The main disadvantages are the likely distortion of the mould caused during the baking process; susceptibility to hot tearing of castings and longer production cycles. Also this is more expensive than the green sand mould.


Skin Dried Mould:


Though the dry sand mould is preferable for large moulds because of the expense involved, a compromise is achieved by drying only the skin of the mould cavity with which the molten metal comes into contact, instead of the full mould. The skin is normally dried to a depth of 15 to 25 mm, using either torches or by simply allowing them to dry in atmosphere. This can also be done in pit moulding. However, pouring of metal should be completed immediately after the drying process such that moisture from the undried portion would not penetrate the dried skin.

Plaster moulding:


Also called rubber plaster moulding (RPM), is a specialized casting process used for producing non-ferrous (aluminium and copper base alloys) castings by pouring liquid metal into moulds made of Plaster of Paris (gypsum). In this process, Plaster of Paris (CaSO4.1/2H2O) is mixed with water to form a slurry with additives such as ceramic talc, fiberglass, clay, silica flour, fly ash, etc., with water and then poured over the pattern. The additives are used to enhance the mould properties such as green and dry strength, permeability, and castability. The slurry is allowed to preset to a rubbery consistency which allows it to be stripped from the pattern but which is sufficiently strong to return to the shape it had when on the pattern. The preset mould is then ignited to burn off the volatile content in the set gel and baked at about 120 to 260°C. This step results in a hard and rigid mould containing microscopic cracks. Cores can also be made using similar process. Cores, if required, are then placed in the drag half. The cope half is then aligned with the drag half and locating pins on cope going into the matching pin holes in the cope. This assembling process can be done while the moulds are still hot or after they have cooled to

	room temperature depending on mould complexity. Dried plaster moulds have extremely low permeability of about 1 to 2 AFS. In view of this low permeability, gravity pouring is rarely employed and a vacuum assist is usually required for the pouring of moulds.			
	Pit Moulding: Pit moulding is used for large and heavy castings weighing up to 150 tons where using a moulding flask for the process becomes almost impossible and too expensive for the amount of handling is concerned. The pit is normally formed in the foundry floor with sand. The pit acts as a drag where the cavity is formed. Pattern is placed in the pit and the sand is rammed around it to form the drag cavity. A separate cope can then be used above the pit which will be at the floor level. The cope can be constructed with bricks and normally houses the pouring cup and sprue. Vent pipes will be added into the pit to facilitate the escape of gases. This is a slow process and requires a lot of time to complete the mould.			
	Loam Moulding: Loam sand contains many ingredients like fine sand particles, finely ground refractories, clay, graphite and fibre reinforcements. Loam soils generally have better drainage than clay soils. They retain water easily. Organic matter such as chopped straw is added to the sand to provide good ventilation. Loam moulds are generally employed for making large castings without using the expensive full patterns and moulding flasks. They use skeleton patterns and sweeps to reduce the cost of patterns. Objects such as large cylinders, chemical pans, large gears, round bottoms, kettles and other machining parts are produced in loam moulding. Big moulds are constructed using brick framework that will be lined with loam sand and dried. Sweeps, etc. are used for getting the requisite profile of the casting.			
	OR			
3 a)	Describe the centrifugal casting process with a neat sketch.			
	This is a process where the mould is rotated rapidly about its central axis as the metal is poured into it. Because of the centrifugal force, a continuous pressure will be acting on the metal as it solidifies. The slag, oxides and other inclusions being lighter, gets separated from the metal and segregates toward the centre. This is normally used for the making of hollow pipes, tubes, hollow bushes, etc., which are axi-symmetric with a concentric hole. Since the metal is always pushed outward because of the centrifugal force, no core needs to be used for making the concentric hole. The axis of rotation can be horizontal, vertical or any angle in between. Very long pipes are normally cast with horizontal axis whereas short pieces are more conveniently cast with a vertical axis. First, the moulding flask is properly rammed with sand to confirm to the outer contour of the pipe to be made. Any end details, such as spigot ends, or flanged ends are obtained with the help of dry sand cores located in the ends. Then the flask is dynamically balanced so as to reduce the occurrence of undesirable vibrations during the casting process. The finished flask is mounted in between the	L2	CO2	5 M

	 Minimizes Risk of Hydrogen Cracking: Slower cooling allows hydrogen, which may have been introduced during welding, to diffuse out of the weld zone, reducing the risk of hydrogen-induced cracking. Enhances Weld Penetration and Fusion: Pre-heated materials generally respond better to the welding arc, leading to improved fusion and deeper penetration, particularly in thick sections. Improves Metallurgical Properties: In materials like high-strength steels and alloy steels, pre-heating helps maintain favorable mechanical properties and reduces hardness in the heat-affected zone (HAZ). Importance of Post-heating in Welding Hydrogen Removal: Post-heating (also known as hydrogen bake-out) is often used to keep the weld area at an elevated temperature immediately after welding to allow hydrogen to escape, reducing the risk of delayed cracking. Stress Relief: Post-heating can be part of a stress-relief heat treatment to reduce residual stresses developed during welding. This is especially critical for thick sections, restrained joints, or pressure vessels. Microstructure Control: It helps transform the microstructure into more stable phases, reducing brittleness and enhancing ductility and toughness. Prevents Cracking: By controlling the cooling rate after welding, post-heating reduces the chances of solidification and liquation cracking, particularly in materials sensitive to such defects. Compliance with Codes and Standards: Many engineering codes (e.g., ASME, AWS) mandate post-weld heat treatment 			
b)	 (PWHT) for certain materials and thicknesses to ensure safety and reliability Illustrate the working of Submerged Arc Welding process with a neat sketch. The submerged arc welding (SAW) is used for doing faster 			
	The submerged arc weiding (SAW) is used for doing faster welding jobs. It is possible to use larger welding electrodes (12 mm) as well as very high currents (4000 A) so that very high metal deposition rates of the order of 20 kg/h or more can be achieved with this process. Also, very high welding speeds (5 m/min) are possible in SAW. Some submerged arc welding machines are able to weld plates of thickness as high as 75 mm in butt joints in a single pass. Though submerged arc welding can be used even for very small thicknesses, of the order of 1 mm, it is more economical for larger welds only. The arc is produced while the consumable electrode wire which is continuously fed into the weld zone as in GMAW. The welding zone is completely covered by means of a large amount of granulated flux which is delivered ahead of the welding electrode by means of a welding flux feed tube. The arc occurring between the electrode and the work piece is completely submerged under the flux and not visible from outside. A part of the flux melts and forms the slag, which covers the weld metal. The unused flux is collected and reused. Since the arc is completely submerged in the flux, there is no spatter of the molten metal. Since this process uses loose granulated flux to cover the joint, it is not possible to carry out in any position other than the flat or down	L2	CO3	5 M

	strikes the As these in the parameters around t travel alo	in a small area. When the work piece all the kind electrons penetrate the math is melted and a keyho he beam. As the beam training with the molten metal d, forms the joint.	etic energy is converted letal, the material that is ble is formed melting the averses, the keyhole wo	to heat. directly ne metal uld also
			Cathode (Electron gun) Anode Positioning diaphragm Electro magnetic lens Work piece	
b)	 The period The derivative The derivative It is a control focus. The probetwee Filler m The heat af virtual 	ges of Electron-beam we netration of the beam is h pth-to-width ratios betwee d with electron-beam wells also possible to closely ling the accelerating vo rocess can be used at his n 125 to 200 mm/s. netal or flux are not needed at liberated is low and al fected zone is minimal a y eliminated.	igh. een 10:1 and 30:1 can b ding. control this penetrat ltage, beam current an igher welding speeds t d to be used in this proc so is in a narrow zone, t as well as weld distorti	tion by d beam ypically ess. thus the ons are
	·· mat ar	e the uniterences betwee	in soldering, brazing an	a welding.
	<u>S.No.</u> 1	WeldingWeldingjointsstrongest joints used to bearthe load.Strength of thewelded portion of joint isusuallymorethanthestrength of basemetal.	Soldering Soldering joints are weakest joints out of three. Not meant to bear the load. Use to make electrical contacts generally.	Brazing Brazing joints are weaker than welding joints but stronger than soldering joints. This can be used to bear the load up to some extent.
	2	Temperature required is 3800°C in welding joints.	Temperature requirement is up to 450°C in soldering joints.	Temperature may go to 600°C in brazing joints.
	3	To join work pieces need to be heated till their melting point.	Heating of the work pieces is not required.	Work pieces are heated but below their melting point.

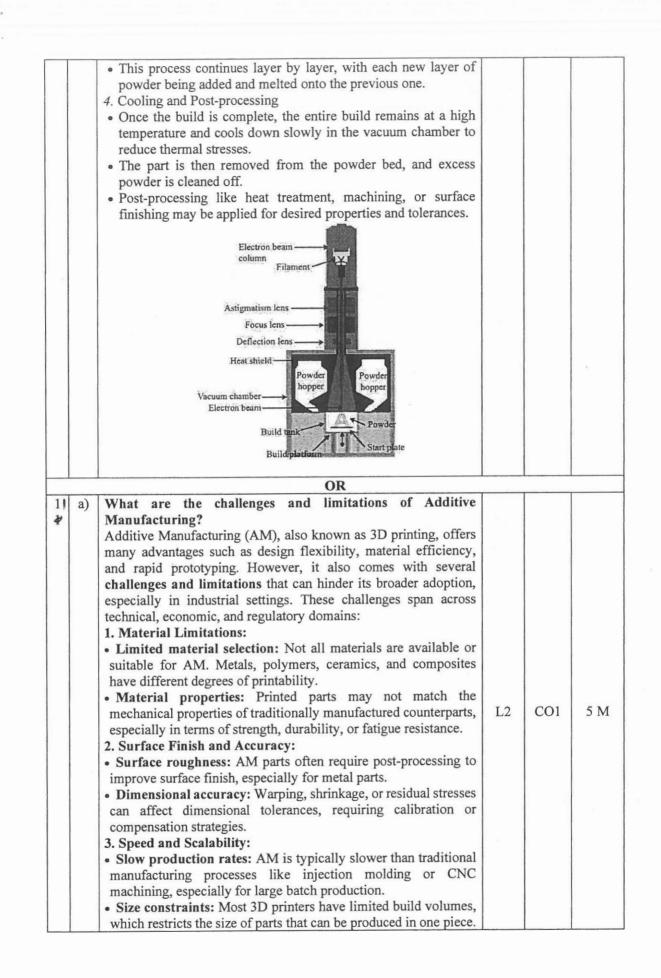
.

	5	Heat cost is involved and high skill level is required.	Cost involved and skill requirements are very low.		involved and sill d are in between other		
	6	No heat treatme after brazing.	nt is requi	red			
	7	No preheating of workpiece is required before welding as it is carried out at high temperature.	Preheating of workpieces before soldering is good for making good quality joint.	Preheating is make strong join carried out at r temperature.	t as brazing	g is	
	L2 CO	3 5 M	-				
6 a)		the process of forging an	UNIT-III			т	
	is applied final shap processes generally sometim Forging are genered Smith F openly of floor by Drop Fo by mean componed Press Fo done in co a continu Machine material to get the	Types: There are four ty rally used. Forging: This is the trad or in open dies by the villa manual hammering or by orging: This is the operation as of the drop hammers. Ent is applied in a series of orging: Similar to drop for closed-impression dies with toous squeezing type applie e Forging: Unlike the dr is drawn out, in machine for e desired shape.	in such a way that the r the oldest of the metal-w ice the copper age. For though cold forging is us opes of forging methods, itional forging operatio age blacksmith or moder power hammers. In done in closed impressi Here the force for shap blows. orging, the press forging the exception that the ed by the hydraulic pression op or press forging who orging, the material is onl	equired vorking ging is sed , which n done rn shop L2 ion dies ing the is also force is es. ere the	CO4	5 M	
b)	Strain h by which deforme beyond it and inter Mechani 1. Durin disloca 2. As du interact 3. This disloca	ng plastic deformation (e. tions move through the me eformation continues, dis t with each other, creating	work hardening, is the part and harder as it is plass subjected to mechanical is in its crystal structure mation more difficult. .g., rolling, drawing, be etal's crystal lattice. locations begin to pile internal barriers to move density impedes for me material's yield streng	stically al stress nultiply nding), up and ement. Yurther	CO4	5 M	

Strain hardening can be reversed or removed by a process called annealing , which involves heating the metal to a specific temperature and then cooling it.			
 Annealing Stages: 1. Recovery: Relieves some of the internal stresses. Dislocation density does not change significantly. Minor improvements in ductility. 2. Recrystallization: New strain-free grains nucleate and grow within the deformed structure. Occurs at a specific recrystallization temperature (typically 0.3–0.5 times the melting temperature in Kelvin). Restores ductility and reduces strength and hardness. 3. Grain Growth (if heating continues): Recrystallized grains grow larger. Strength may decrease further, but ductility increases. 			
OR			
 applications. Extrusion is a metal forming process used to create objects of a fixed cross-sectional profile by forcing material through a die. There are several types of extrusion processes, each suited for specific materials, products, and performance requirements. 1. Direct (Forward) Extrusion: The billet and ram move in the same direction. It is one of the most common extrusion methods. Applications: Solid and hollow aluminum profiles Structural components Window frames, rails, and beams 2. Indirect (Backward) Extrusion: The die moves against a stationary billet. This reduces friction and can be more energy-efficient. Applications: Tubes and cylinders Thin-walled components Precision parts 3. Hydrostatic Extrusion: The billet is surrounded by a pressurized liquid, and pressure is transmitted uniformly. It reduces friction and is suitable for brittle materials. Applications: High-strength materials (e.g., titanium, high carbon steel) Fine wire and rod production Aerospace and defense components 4. Impact Extrusion: Used in high-speed operations where a punch strikes a slug to form the desired shape. Typically cold and used for soft metals. 	L2	CO4	5 N

	D-#	T	1	1
	Battery cases Small electrical components			
b)	Small electrical components		CO4	5 M
	intended directions. UNIT-IV			
8 a)	Explain the process of stretch forming with applications. In stretch forming, the complete deformation is carried out in plastic state only. The material is first brought into plastic state by stretching, hence the name stretch forming. In the process, the sheet is held in the jaws of hydraulic cylinders and is stretched beyond elastic limit. Then the sheet is brought into contact with the die, so as to give it the shape of the die. Stretch forming is comparatively simple and inexpensive because it uses a single die. Many complicated shapes cannot be obtained but the component can have either singly curved or doubly curved surface. Also if the component is to have any holes, they may be punched after stretch forming otherwise the holes are likely to be enlarged. The physical properties are generally improved by the uniform stretching of the metal. The sheet used in stretch forming should have uniform thickness, otherwise the thinner portions are likely to be overstretched.	L2	CO4	5 M

	Blank			
	Die Jaw Hydraulic cylinder			
	Applications of Stretch Forming:			
	1. Aerospace Industry			
	• Aircraft skins: fuselage panels, wing skins, and engine			
	cowlings. Materials like aluminum and titanium are shaped into			
	smooth, aerodynamic curves. Ensures minimal stress			
	concentrations and high strength-to-weight ratio.			
	2. Automotive IndustryBody panels and trim parts for concept cars or custom			
	builds. Used when large, smooth, contoured panels are needed			
	(e.g., hoods, doors). Sometimes used in high-end or specialty			
	vehicles, not mass production.			
	3. Architecture			
	• Curved metal panels for building facades, roofing, and			
	decorative structures. Enables the creation of modern, sleek,			
	and complex geometries.			
	4. Rail and Transportation			
	• Stretch forming is used for train and tram panels where			
	aerodynamic shaping and surface quality are critical.			
	5. Shipbuilding			
	• Some specialized curved parts of ships and submarines,			
b)	particularly with aluminum structures			
b)	Discuss different types of presses used in sheet metal forming.			
	Sheet metal forming involves shaping metal sheets into desired			
	forms using various tools and presses. Presses are essential in this			
	process as they apply the necessary force to shape the metal. Here			
	are the different types of presses commonly used in sheet metal			
	forming:			
	1. Mechanical Presses			
	These presses use a mechanical flywheel powered by an electric			
	motor to generate force.	L2	CO4	5 M
	• Crank Press: The most common type, where a crankshaft drives the ram.	L2	004	5 101
	• Knuckle Joint Press: Offers slow, powerful pressing near the			
	bottom of the stroke—ideal for coining and embossing.			
	• Eccentric Press: Uses an eccentric shaft instead of a crankshaft,			
	offering smooth operation.			
	2. Hydraulic Presses			
	These use hydraulic cylinders to apply force through fluid pressure.			
	• Single-acting hydraulic press: Applies force in one direction.			
	• Double-acting hydraulic press: Applies force in both			


	• Triple-action hydraulic press: Has a blank holder, punch, and ejector—used in complex deep drawing operations.			
	3. Pneumatic Presses: These use compressed air to generate force.			
	Advantages:			
	Fast operation			
	 Lower cost compared to hydraulic presses 			
	Limitations:			
	Lower force capacity			
	 Less precise than mechanical or hydraulic presses 			
	4. Servo Presses (Electromechanical Presses)			
	These are powered by electric motors with programmable motion profiles.			
	Advantages:			
	Precise control of speed, stroke, and force			
	• Energy-efficient and low maintenance			
	Capable of handling complex forming operations			
	Limitations:			
	Higher initial cost			
	 Requires skilled operation and programming 			
	5. Toggle Presses			
2	A mechanical press that uses a toggle mechanism to amplify force			
	near the end of the stroke.			
	Advantages:			
	• High force application near bottom dead center			
	• Good for applications requiring high-pressure finishing			
	Limitations:			
	• Limited stroke length and speed variability			
	6. Hydroforming Presses			
	Use high-pressure hydraulic fluid to form sheet metal into a die. Advantages:			
	• Can create complex shapes with uniform thickness			
	Reduces the need for welding or joining			
	Limitations:			
1 .	Specialized equipment			
	High setup costs			
_	OR		1	
a)	What is high-energy rate forming? Explain its importance.			
	High-energy rate forming (HERF) is a group of metal forming			
	processes that use high rates of energy delivery typically in a very			
	short time duration to deform materials into desired shapes. These			
	processes rely on the application of force at extremely high			
	velocities, which distinguishes them from conventional forming			
	methods.			
	Common HERF Methods		0.01	
	1. Explosive forming – Uses the detonation of explosives to form	L2	CO1	5 M
	metal sheets into dies.			
	2. Electromagnetic forming – Utilizes electromagnetic forces to			
	shape conductive materials.			
	3. Electrohydraulic forming – Employs underwater spark			
	discharges to create shock waves that form the metal.			
	4. High-velocity impact forming – Uses high-speed projectiles			
	or rams.			
1	Importance of High-Energy Rate Forming		1 1	

	 Forming Complex Shapes: HERF can create intricate and deep-draw shapes that are difficult or impossible to achieve using traditional methods. Improved Material Properties: High strain rates can lead to work hardening and finer grain structures, improving strength and performance of the formed parts. Better Material Utilization: These processes often require less trimming and waste, improving efficiency and reducing costs. Enhanced Formability: Materials that are difficult to form under normal conditions (like high-strength alloys) may become more ductile under high strain rates. No Need for Heavy Tooling: In some HERF methods, especially explosive and electromagnetic forming, lighter and cheaper tooling can be used, reducing setup costs. Applications in Aerospace and Defense: HERF is widely used for forming components that require high strength-to-weight ratios, such as aerospace panels, missile parts, and satellite components. 			
b)	Illustrate the spinning process along with applications. Spinning is the process used for making cup shaped articles which are axisymmetric. The process of spinning consists of rotating the blank, fixed against the form block and then applying a gradually moving force on the blank so that the blank takes the shape of the form block. The setup essentially consists of a machine similar to a centre lathe. In the head stock of the spinning machine, a hard wood form block which has the shape of the desired part is fixed. The blank is held against the form block by means of the freely rotating wooden block from the tail stock. After proper clamping, the blank is rotated to its operating speed. The spinning speed depends on the blank material, thickness and complexity of the desired cup. Then the hard wood or roller type metallic tool is pressed and moved gradually on the blank so that it conforms to the shape of the form block. The manipulation of spinning tools is a highly skilled art. The tool is to be moved back and forth on the blank so that no thinning takes place anywhere on the blank. Spinning is comparable to drawing for making a cup is more in spinning and also more skill is required in the process. Thus, it is not suitable for large scale production. Complicated shapes and re-entrant shapes are not feasible by drawing but can be made by spinning than by drawing. When sheet thickness is more, for example, in making the dished ends of pressure vessels, cold spinning is not sufficient. Then the blank is heated to the forging temperature and so the process is called 'hot spinning'. Also in hot spinning, the tools are mechanically manipulated because of the higher magnitudes of forces required.	L2	CO4	5 M

		Form blank Grand Blank Grand Spun cup Grand Cup Tool UNIT-V			
10	a)				
	a)	 What are the different types of materials used in Additive Manufacturing? Additive Manufacturing (AM), also known as 3D printing, uses a wide variety of materials depending on the printing technology and the intended application. These materials can be broadly classified into several categories: Polymers (Plastics): Most common materials used, especially in consumer-grade 3D printers. Thermoplastics: PLA (Polylactic Acid) – Biodegradable, easy to print, low cost. ABS (Acrylonitrile Butadiene Styrene) – Strong, durable, slightly higher melting point. PETG (Polyethylene Terephthalate Glycol) – Good strength and chemical resistance. Nylon (Polyamide) – Flexible, strong, wear-resistant. TPU/TPE (Thermoplastic Polyurethane/Elastomer) – Rubber-like flexibility. Thermosets: Used mainly in vat photopolymerization (e.g., SLA, DLP) processes. Examples: epoxy, acrylic-based resins. Characteristics: high detail resolution, brittle. Metals: Used in industrial AM for functional and structural components. Titanium and its alloys (e.g., Ti-6Al-4V) – Lightweight, high strength, corrosion-resistant, used in molds and dies. Nickel-based superalloys (e.g., Inconel) – High-temperature performance. Cobalt-Chromium alloys – Biocompatible, used in medical and dental applications. 	L2	CO1	5 M
		3. Ceramics: Used for high-temperature or biocompatible applications.			
		Alumina (Al ₂ O ₃)			
		 Zirconia (ZrO₂) 			
		 Silicon carbide (SiC) 			
L	l				

.

		• Hydroxyapatite – Used in bone scaffolds.		· · · · ·	
		Challenges: Brittle nature, complex sintering processes.			
		4. Composites: Mixtures of two or more materials to enhance			
		properties.			
		• Polymer matrix composites with: Carbon fiber, Glass fiber,			
		Kevlar			
		 Metal matrix composites – Metal reinforced with ceramic or other particles. 			
		Advantages: Improved strength, stiffness, thermal and chemical			
		resistance.			
		5. Bio-Materials: Used in bioprinting and tissue engineering.			
		• Hydrogels – Water-rich, biocompatible materials (e.g., alginate, gelatin).			
		• Biodegradable polymers – e.g., PLA, PCL (polycaprolactone).			
		• Living cells – In bio-inks for tissue and organ printing.			
		6. Sand and Foundry Materials: Used in Binder Jetting for			
		casting molds.			
		Silica sand			
		• Furan or phenolic resins – Used as binders.			
		7. Concrete and Cementitious Materials: Used in large-scale 3D			
		printing (e.g., construction).			
0		 Mortar-based mixes 			
		Fiber-reinforced concrete			
	b)	Explain the working of Electron Beam Melting (EBM) in Additive Manufacturing.			
		Traditive manufacturing.			
		Electron Beam Melting (EBM) is an advanced Additive Manufacturing (AM) technology used primarily for metal 3D			
		printing, especially in aerospace and medical applications. It is a			
		powder bed fusion process that utilizes an electron beam as the			
		energy source to melt and fuse metal powder layer by layer to build			
		a solid part.			
		Working of Electron Beam Melting (EBM):			
		1. Preparation			
		 A 3D CAD model is sliced into layers using specialized software. 			
		• A vacuum chamber is prepared because the electron beam	L2	CO5	5 M
		requires a vacuum to operate efficiently.	114	005	5 111
		• Metal powder, such as titanium or cobalt-chrome, is evenly			
		spread on the build platform in a thin layer using a rake or roller.			
		2. Preheating			
		• The electron beam preheats the entire powder bed to a high			
		temperature (but below the melting point) to:			
		 Minimize residual stresses 			
		 Prevent powder repulsion due to electrostatic forces 			
		3. Melting and Fusion			
		• The electron beam, controlled by electromagnetic coils,			
		selectively scans the powder layer according to the cross-			
		sectional geometry of the part.			
		• The beam melts the powder, which quickly solidifies to form a			
		solid metal layer.			

	4. Cost Factors:			
	• High machine costs: Industrial-grade 3D printers, especially for			
	metal AM, are expensive to purchase and maintain.			
	• Material costs: Specialized materials (e.g., metal powders or			
	high-performance polymers) can be significantly more expensive			
	than bulk materials used in conventional manufacturing.			
	• Post-processing costs: Additional time and resources are needed			
	for processes like heat treatment, surface finishing, and support			
	removal.			
	5. Design and Software Limitations:			
	• Complexity in design tools: Advanced software is required to			
	design for AM, especially when leveraging design freedoms like			
	lattice structures or topology optimization.			
	• Skill gap: Engineers and designers often lack training in AM-			
	specific design principles, limiting the effective use of the			
	technology.			
	6. Mechanical Properties and Reliability:			
	• Anisotropy: Properties of AM parts can vary depending on the			
	build direction, which may lead to inconsistent performance.			
	• Porosity and defects: Some AM processes can result in internal			
	voids or weak inter-layer bonding, reducing structural integrity.			
	7. Standards and Certification:			
	• Lack of industry standards: AM is still evolving, and there is a			
	lack of standardized testing and quality assurance methods.			
	• Certification hurdles: Especially in regulated industries like			
	aerospace or medical, certifying AM parts can be complex and		1	
	time-consuming.			
	8. Environmental and Safety Concerns:			
	• Material waste and recycling: Although AM is often praised			
	for low waste, support structures and failed prints still contribute			
	to material waste.			
	• Health risks: Powders and fumes used in AM can pose health			
	hazards, requiring proper handling and ventilation.			
	9. Intellectual Property (IP) Concerns:			
	• Digital file vulnerability: Design files can be easily copied or			
	modified, raising IP protection issues.			
	• Counterfeit risk: AM can potentially be used to produce			
	unauthorized copies of proprietary parts.			
)	Discuss the applications of Additive Manufacturing in the			
	aerospace and medical fields.			
	Aerospace Applications of Additive Manufacturing:			
	1. Lightweight Components			
	• AM allows for the design of lightweight structures with complex			
	internal geometries (e.g., lattice structures) that maintain strength			
	while reducing mass.	L2	CO1	5 N
	 Example: GE Aviation's 3D-printed fuel nozzles for jet engines 	122		51
	· · · ·			
	are 25% lighter and five times more durable than traditionally			
	manufactured parts.			
	2. Design Optimization and Complexity			
	• Topology optimization tools can be combined with AM to			
	produce parts that are stronger and more efficient, often impossible			
	to manufacture through traditional methods.	1		

• Components like brackets, ducting, and heat exchangers benefit from these optimizations.	
3. Rapid Prototyping and Tooling	
o AM accelerates the design-to-test cycle, enabling engineers to	
quickly iterate and improve designs.	
o Custom tooling and jigs can also be produced on-demand,	
reducing lead times.	
4. Supply Chain Efficiency	
 AM can reduce reliance on long supply chains by enabling localized production of spare parts, especially for aging aircraft. It also decreases the need for inventory by producing parts on 	
demand.	
 5.Repair and Maintenance AM techniques like Directed Energy Deposition (DED) are used for repairing high-value components such as turbine blades. 	×.
Medical Applications of Additive Manufacturing:	
1. Customized Implants and Prosthetics	
• AM enables the production of patient-specific implants (e.g.,	
cranial plates, hip joints, spinal cages) tailored to individual anatomy using data from CT or MRI scans.	
• Titanium and biocompatible polymers are commonly used	
materials.	
2. Bioprinting and Tissue Engineering	
o 3D bioprinting allows the creation of scaffolds for tissue	
regeneration and, in experimental phases, the printing of tissues	
and organs using cells and biomaterials.	
• This has potential for regenerative medicine and drug testing.	
3. Surgical Planning and Simulation	
• Anatomical models of organs, bones, or tumors are printed from	
patient imaging data to assist surgeons in planning complex	
procedures and improving accuracy.	
 These models are also valuable for education and training. 	
4. Dental and Orthodontic Applications	
o Customized dental implants, crowns, bridges, and aligners can	
be manufactured with high precision using AM.	
 This reduces turnaround time and improves patient comfort. 	
5. Medical Devices and Instruments	
o AM supports the design and production of lightweight,	
ergonomic, and highly customized medical tools and instruments.	
• These include surgical guides and cutting templates, enhancing	
precision during procedures.	

•

