
........

........ 0

........
0 o

"<:t
0 o

"<:t
0 o

st
0
st .,
CL

........
0 o

.9
en - - ro o

E
11) ·- o
~ 4-<

11)

c:: ·-

........
0 o

........
0 o

........
0 o

0 u8
........
0 o

........
0 o

........
0 o

........
0 o

bl) ~ .s 11)
~ "O
0 .9 - - - >. c.8 o

........
0 o

~
0 o

6
0
B :::,
0

........
0 o

......
0
s:t"
M
Cl) o
M
N
0

-0
0 o

......
0
s:t"

8
M
N

..

o
0

o
0 +>-

o
0
N

o
0
l.,.)

o
0
l.,.)

o
0

o
0
l.,.)

-0
"' "' s, ..,.

00

......
..:.....
'-"' <;»

(1) tr:l 8 0 :>< :>< § (1) .§ 'E. en
~

()
Cl ::i .

~ s· 8 er
:fl (1)

0.. (1) ..-+ t:I e:r-
~ !'"'" (1)
(1) >; >; 0 (1)
t:I - ..-+ (1)

0
~ I-+,

~ 0.. ::j•
(1)

Cl o o
o 0
(1) ~ en en en
8 2
(1) o a- e:r-
0 d
~ en

.......
t:I

~ ~ - ::,-- (1)

t-t t-t
N N

o o
0 0

+>- l.,.) N

er Cl er e er e '-"' <;» '-"' <;»

..-+ c =i
~

Cl tr:l tr:l 0.. (1) o 0 en 0 e:r- Ul - "d 'E. t:I :>< ~ ~ 0 t:I (1)
(1) (1) (1) c "O 0

(1)
~ t:I >; s 8 8 en 8> en a 0 >; <§. ~r o ..-+ en

(1) - >; o Cl 0 "d 0 o n. :>< Cl (1)
....... o Cl t:I (1)

"d o' ..-+ en t:I (1) t:I . s >;

~
en en er - (1) en en (1) (1) ;;r (1)

Ul 0.. ~ Cl >; en
~

en (1) ()
~- ..-+ 8 e:r- t:I ..-+ p Cl ..-+

id Cl (1) ..-+ (1) e:r- <-+ (1) § en 0 - Ul e:r- 0 (1) >; en t:I ..-+ (1) ~- I-+, 5· (1) ~: e e:r- c 0.. t:I Cl § (1) :>< t:I (IQ Cl t:I ~- ..-+ (IQ 0.. ~- s 0 ~o - t:I 0.. (1) 0.. ~
>; c

(1) ~ en 8 ~ 0 en ..-+ "d ..-+ Cl (1) - e:r- c (1) a ..-+ (1) o ..-+ >; (1) - (1) :>< id (1)

~

t:I § e:r- (1) (1)
Ul (1) 0 en

~

t:I (1) .§ 0 en !'"'" t:I 0 o I-+, • "d >; er >; 0 ~ 0 (1) 0 en (1) s· I-+, '< ~ e:r- en 0 ~
>;

'< 'a ~ Cl 8 en a I I-+, ..-+ = (1) I
t:I en "O Ul "d t:I ~
0 (1) >; '< Cl 8 (IQ 8 o () 0 () o ..-+ e:r- en ·~ ·~ Cl () 0 "d

t:I (1) (1) (1) 8 >; - 0.. en 8 0 0 Ul
I-+, c en t:I "d ~ '< - c ~ o en '< 3 ..-+ t:l e 0 s· (1) (1) er OQ §: en (1) ·~ cii"' en OQ en 8

r- r- t-t t-t t-t t-t t:o
l.,.) N +>- N l.,.) N t-t
o o o o o o o 0 0 0 0 0 0 0 N
VI VI VI VI +>- 0\ ~ ~ Cl
~ ~ ~ ~ ~ ~ >; Cl

~ :><
en

1. a) Role of System Calls in an Operating System (2M)

1.b) Free-Source Operating System vs Open-Source Operating System (2M)

1.c) Purpose of process scheduling in an operating system (2M)

1.d) Role of multithreading in improving system performance (2M)

1.e) Critical Section Problem (lM)

Examples (lM)

1.t) Peterson's Solution (2M)

l.g) Virtual Memory (2M)

l.b) Paging vs Segmentation (2M)

1.i) Directory Structures in file management (2M)

1.j) File Access Methods (2M)

II B.Tech -II Semester- Regular Examination -May-2025

Operating Systems (23CS3401/23IT3401)

Short Scheme

Part-A

10.a) File Attributes (2M)

File Operations (3M)

10. b) Allocation methods (SM)

11.a) File Sharing (SM)

11. b) Domain of protection (SM)

9.a) FCFS(2.SM) SSTF(2.SM)

9.b) Virtual Memory (3M) ~eneC!.s en)

8.a) LRU Page Replacement Algorithm (SM)

8.b) Disadvantages of Single Contiguous Memory Allocation (SM)

7.a) Deadlock Detection (SM)

7.b) Semaphores (SM)

6.a) Semaphores (SM)

6.b) Banker's Deadlock-avoidance Algorithm (SM)

S.a) Preemptive vs Non-preemptive Scheduling (SM)

S.b) Multiple Processor Scheduling (SM)

4.a) Process (SM)

4.b) Round Robin Scheduling (SM)

3.a) Different Computing Environments (SM)

3.b) Significance of System Calls in .process Management (SM)

PART-B

2.a) Operating Systems Services (6M)

2.b) Role of System Programs is OS Functionality (4M)

Le) Critical Section Problem (2M)
A critical section is a part of a program where the process accesses shared resources. To ensure

correctness, only one process should execute its critical section at any given time.

Examples: Bounded-Buffer Problem, Readers-Writers Problem, The Dining-Philosophers

Problem.

3. Increased Throughput

4. Scalability on Multi-core Systems

1. Improved CPU utilization

2. Efficient Resource Sharing

1.c) Purpose of process scheduling in an operating system (2M)
Purposes of Process Scheduling

1. Efficient CPU Utilization: Minimizes CPU idle time by selecting ready processes to run.

2. Throughput: Maximizes the number of processes completed per unit time.

3. Turnaround Time: Aims to minimize the time taken from process submission to completion.

4. Waiting Time: Tries to reduce the time processes spend in the ready queue.

l.d) Role of multithreading in improving system performance (2M)

Multithreading is a technique where a single process is divided into multiple threads that run

concurrently. These threads share the same memory space but can execute different parts of a

program simultaneously.

Benefits of Multithreading

Free-Source Operating System Open-Source Operating System
Users have the freedom to use, study Open-source means the source code is available for
modify and distribute the software inspection, modification, and distribution, usually und

an OSI-approved license.
Often copyleft: derivatives must also May allow permissive licenses: derivatives can be
be free. proprietary.

1.b) Free-Source Operating System vs Open-Source Operating System (2M)

Key Roles of System Calls

1. Process Control 4. Information Maintenance

2. File Management 5. Communication

3. Device Management 6. Protection and Security

II B. Tech - II Semester - Regular Examination - May -2025
Operating Systems (23CS3401/23IT3401)

Long Scheme
Part-A

1. a) Role of System Calls in an Operating System (2M)

System calls act as the interface between user applications and the operating system kernel,

allowing user programs to request services from the OS.

1.j) File Access Methods (2M)

I. Sequential Access: Information in the file is processed in order, one record after the other.

2. Direct access is also called relative access. Here records can read/write randomly without

any order. The direct access method is based on a disk model of a file, because disks allow

random access to any file block.

3. Indexed Sequential File Access: Records are organized in sequence based on a key field.

3. Efficient File location and Access

4. Supports File Operations

1. Organization of Files

2. Access control and security

1.i) Directory Structures in file management (2M)

In an operating system, directory structures play a crucial role in organizing, managing, and

accessing files efficiently.

Paging Segmentation

Divides memory into fixed-size blocks Divides memory into variable-sized segments

called pages (logical) and frames based on logical divisions in the program (e.g.,

(physical). code, data, stack).

Suffers from internal fragmentation May suffer from external fragmentation

Uses a page table Uses a segment table

1.t) Peterson's Solution (2M)

Peterson's solution states that when one process is executing its critical section then the other

process executes the rest of the code and vice versa.

Peterson solution requires two shared data items:

1) tum: indicates whose turn it is to enter into the critical section. If turn = i , then process

i is allowed into their critical section.

2) flag: indicates when a process wants to enter into critical section. When process i wants

to enter their critical section, it sets flag[i] to true.

1.g) Virtual Memory (2M)

Virtual memory is a memory management technique that allows an operating system (OS) to use

disk space as an extension of RAM, creating the illusion of a large, contiguous block of memory

for each process

I. Enables execution of Larger Program

2. Efficient use of RAM

3. Prevents Fragmentation.

1.h) Paging vs Segmentation (2M)

• One set of operating-system services provides functions that are helpful to the user:
• User interface - Almost all operating systems have a user interface (UJ) .

./ Varies between Command-Line (CLI), Graphics User Interface (GUI), touch-screen
• Program execution - The system mustbe able to load a program into memory and to run

that program, end execution, either normally or abnormally (indicating error)
• 1/0 operations - A running program may require 1/0, which may involve a file or an I/0

device
• File-system manipulation - The file system is of particular interest. Programs need to

read and write files and directories, create and delete them, search them, list file
Information, permission management.

• Communications - Processes may exchange information, on the same computer or
between computers over a network
./ Communications may be via shared memory or through message passing (packets

moved by the OS)
• Error detection - OS needs to be constantly aware of possible errors

./ May occur in the CPU and memory hardware, in 1/0 devices, in user program

./ For each type of error, OS should take the appropriate action to ensure correct and
consistent computing

./ Debugging facilities can greatly enhance the user's and programmer's abilities to
efficiently use the system

2.b) Role of System Programs is OS Functionality (4M)
System programs, also known as system utilities provide a convenient environment for
program development and execution. They can be divided into:
• File management: These programs create, delete, copy, rename, print, dump, list and

generally manipulate files and directories.
• Status information: Some ask the system for info - date, time, amount of available

memory, disk space, and number of users. Others provide detailed performance, logging,
and debugging information.

• Programming language support: Compilers, assemblers, debuggers, and interpreters for
common programming languages are often provided with the operating system.

• Program loading and execution: Once a program is assembled or compiled, it must be
loaded into memory to be executed.

• Communications: These programs · provide the mechanism for creating virtual
connections among processes, users, and computer systems.

u1cr and other system- progr.,,t'f'ls

r: GUI I tc.>uch ,c,...n j ,omm..nd lln• J

I WIN' lnt•,f•f.•• I ~~-· --- -~- :IV1-WMC,alb

f . II II I l <ommunlmJon 11 II Pf09'•'" VO ,.,. r1t,i(u . .u~• nccountlng I e>nt<utlnn OPffHlllon1 1~tf'mt. •llnchtlOf'I r-· -i
r I llfUQf ptOll.:'-IIOn d11tc,c-tlon

.)•t:u,Oy ••f'Vk'fl\

o.,..r .. uno•Y&t•m
h1ud~r•

PART-B

2. a) Operating Systems Services (6M)
Operating systems provide an environment for execution of programs and services to programs
and users. A View of Operating System Services

5. Cloud Computing
• Delivers computing, storage, even apps as a service across a network
• Logical extension of virtualization because it uses virtualization as the base for it

functionality.
• Many types

../ Public cloud - available via Internet-to anyone willing to pay

../ Private cloud- run by a company for the company's own use

../ Hybrid cloud - includes both public and private cloud components

../ Software as a Service (SaaS) - one or more applications available via the Internet (i.e.,
word processor)

../ Platform as a Service (PaaS) - software stack ready for application use via the Internet
(i.e., a database server)

../ Infrastructure as a Service (IaaS) - servers or storage available over Internet (i.e., storage
available for backup use)

• Network Operating System provides. features between systems across network
o Communication scheme allows systems to exchange messages
o Different computers communicate closely enough to provide the Illusion that only

single operating system controls the network.---- Distributed operating system
4. Client-Server Computing
Designers shifted away from centralized system architecture to - terminals connected to
centralized systems. As a result, many of today's systems act as server systems to satisfy
requests generated by client systems. This form of specialized distributed system, called client
server system.

3.a) Different Computing Environments (5M)
The different computing environments are-
1. Traditional Computing

The current trend is toward providing more ways to access these computing environments.
Web technologies are stretching the boundaries of traditional computing. Companies
establish portals, which provide web accessibility to their internal servers. Network
computers are essentially terminals that understand web-based computing. Handheld
computers can synchronize with PCs to· allow very portable use of company information.

2. Mobile Computing
Mobile Computing is possible through Handheld smartphones, tablets, etc.

The Main functional differences between mobile phones and a "traditional" laptop are :
• Mobiles support Extra feature - more OS features (GPS(Global Positioning System) -

for finding locations, gyroscope- for orientation,sliding,tilting etc)
• Allows new types of apps like augmented reality
• Use IEEE 802.11 wireless, or cellular data networks for connectivity

3. Distributed Systems
• Collection of separate, possibly heterogeneous, systems networked together
• Network is a communications path, TCP/IP most common
../ Local Area Network (LAN) ../ Metropolitan Area Network (MAN)
../ Wide Area Network (WAN) ../ Personal Area Network (PAN)

Process State
As a process executes, it changes state
New: The process is being created
Ready: The process is waiting to be assigned
to a processor
Running: Instructions are being executed
Waiting: The process is waiting for some
event to occur
Terminated: The process has finished
execution

4.a) Process (SM)
• A process is the unit of work in a modem time-sharing system.
• An operating system executes a variety of programs that run as a process.

Process - a program in execution; process execution must progress in sequential fashion. No
parallel execution of instructions of a single process
• Multiple parts of a process:

./ The program code, also called text section

./ Stack containing temporary data

./ Data section containing global variables

./ Heap containing memory dynamically allocated during run time
• Program is passive entity stored on disk (executable file): process is active

o Program becomes process when an executable file is loaded into memory
• Execution of program started via GUI mouse clicks, command line entry of its name, etc.
• One program can be several processes

o Consider multiple users executing the same program.

•
•
•
•
•
•
•

create process, terminate process
end (halt program execution normally) , abort (halt program execution annormally)
load and execute programs
get process attributes, set process attributes
wait for time to finish execution of currently executing jobs
wait event, signal event
allocate and free memory
Locks for managing access to shared data between processes

•

3.b) Significance of System Calls in process Management (SM)
• System calls can be grouped into six major categories: process control, file manipulation,

device manipulation, information maintenance, communications, and protection.
Process Control
• If a system call is made to terminate the currently running program abnormally, or if the

program runs into a problem and causes an error trap, a dump of memory is sometimes taken
and an error message generated.

• The dump is written to disk and may be examined by a debugger - errors, or bugs - to
determine the cause of the problem.

• Process control do the following:

Once each process has received 1 time quantum,
The CPU is returned to process Pl for an additional time quantum.
So, The waiting time for process Pl= (10-4) = 6 milliseconds
The waiting time for process P2 = 4 milliseconds
The waiting time for process P3 = 7 milliseconds
Thus, the average waiting time= (6 + 4 + 7)/3 = 17/3 = 5.66 milliseconds.

0 4 7 10 14 18 22 26 30

pl 24
P2 3
P3 3 If we use a time quantum of 4 milliseconds, then

process Pl gets the first 4 milliseconds. Since it
requires another 20 milliseconds, it is preempted after the first time quantum, and the CPU is
given to the next process in the queue, process P2. Process P2 does not need 4 milliseconds, so
it quits before its time quantum expires. The CPU is then given to the next process, process P3 .
Once each process has received I time quantum, the CPU is returned to process Pl for an
additional time quantum.
The resulting RR schedule is as follows:

Burst Time Process

Example : Consider the following set of processes that arrive at time 0, with the length of the
CPU burst given in milliseconds:

4.b) Round Robin Scheduling (SM)
• The round-robin (RR) scheduling algorithm is designed especially for time sharing systems.

Each process gets a small unit of the CPU time called the time slices or time quantum,
which is usually I 0- I 00 milliseconds.

• The ready queue is treated as a circular queue. The CPU scheduler goes around the ready
queue, allocating the CPU to each process for a time interval of up to 1 time quantum. If a
process CPU burst exceeds I time quantum, that process is preempted and is put back in the
ready queue. The round robin (RR) scheduling algorithm is preemptive scheduling
algorithm.

• After the time quantum elapsed and the process has not finished it's execution the timer sets
an interrupt to the operating system. A context switch will be executed, and the process will
be put at the tail of the ready queue. The CPU scheduler will then select the next process in
the ready queue. It is a preemptive scheduling algorithm.

• If there are n processes in the ready queue and the time quantum is q, then each process gets
1/n of the CPU time in chunks of at most q time units at once. No process waits more than
(n-1)q time units.

• The average waiting time under the RR policy is often long.

per-core run queues
(b)

I corenJ

. .
"'

. .
"' "' !_ core0J jcore1 I

. .
~~~~~~ v ...... 
core0J [cor~ ·-- I coren] 
common ready queue 

(a) 

Issues with SMP Systems : 

I < 

2. SMP (Symmetric Multi Processing) 
Here each processor is self scheduling and a)All processes may be in common ready queue 

orb) each processor may have it's own private queue of ready processes. We must ensure that 
two seperatre processors do not choose to schedule the same process and that processes are not 
lost from the queue. 

5.b) Multiple Processor Scheduling 
Multiple-Processor Scheduline; : 
_CPU scheduling more complex when multiple CPUs are available 

• Multiprocess may be any one of the following architectures: 
• Multicore CPUs 
• Multithreaded cores 
• NUMA systems (Non Uniform Memory Access) 
• Heterogeneous multiprocessing 

Approaches to implement Multiple processor scheduling 
• 1. ASMP (Asymmetric Multi Processing) 
• 2. SMP ( Symmetric Multi Processing) 

1.ASMP (Asymmetric Multi Processing) 
Master Server will do all scheduling decisions, 1/0 Processing and other system activities. 

Here only one processor accesses the system data structures and reduces the need for data 
sharing other processors execute user code. 

S. No. Preemptive Sehedulina Non-preemptive Schedulin2 
A scheduling scheme is said to be preemptive A scheduling scheme is said to be non- 

1 if and only if process switches from the preemptive if a process switches from the 
running state or waiting state to the ready running state to the waiting state or if a 
sate. process terminates. 
In this scheduling. the server before In this scheduling. the server will switch to 

2 completing the current request will switch a new request only after completing the 
to a new request for nrecessine, currentlv scheduled reouest, 
Before a request gets completed, it may have Scheduling 15 performed only after 

3 to be scheduled for many times. completing the previeusly scheduled 
request; 

4 Here, preempted request is placed back into Here, preemptive of request will never 
the oendin2 requests list. occur. 
The preemptive scheduling policies include The non-preemptive scheduling policies 5 Round Robin (RR) Scheduling with time include FCFS Scheduling. sliclnu. 

5.a) Preemptive vs Non-preemptive Scheduling (SM) 



NUMA and CPU scheduling 
iii) Multicore Processors : keep multiple processor cores on the same physical chip. Each core 
maintains it's architectural state and thus appears to the operating system to be a seperate physical 
processor. 

SMP systems that use multicore processors are faster and consume less power than systems 
in which each processor has it's own physical chip. In general Multicore systems may complicate 
scheduling Issues. 

I 'CPU I 'CPU 
lfasto.:::::------. ~-=-- 1 fast accoss 

~ - momory -1 I n,e-rnory 

I I 
lnte.-connect 

i) Processor Affinity : 
Attempt to keep a process running on a same processor then it is said to be that the 

process has an Affinity for the processor on which it is currently running. 
This can be divided into two types : 

a) Soft Affinity : When on operating system has a policy of attempting to keep a process 
running on the same processor ,but not guaranteeing that it will do so.(i.e process may 
migrate between processors) 

b) Hard Affinity: Some system provides system calls allowing a process to specify subset 
of processors on which it may run . 
Example: Linux implements soft affinity, but also provides sched_setAffinity() 

Sys call which supports hard affinity. 
ii) Load balancing : 

~ To keep workload evenly distributed across all processors in an SMP system. 
~ Load balancing is important only on systems where each processor has it's own 

private queue of eligible processes 
~ On systems with common run queue load balancing is often necessary. 
There are two general approaches to balance the load: 
a. Push Migration : here a specific task periodically checks the load on each processor 

and if it finds an imbalance , it evenly distributes the load by moving or pushing 
processes from overloaded processors to idle or less busy processors. 

b. Pull Migration : it occurs when an idle processor pulls waiting task from a busy 
processor 

These two approaches need not mutually exclusive and often implemented in parallel 



S++; 
} 

All the modifications to the integer values of the semaphore in the wait() and signal() operations 
must be executed indivisibly. i.e when one process modifies the semaphore value no other process 
can simultaneously modify that semaphore value. 
Semaphore Usage: 
Types of Semaphores : 
• Binary semaphore - integer value can range only between O and 1 

Same as a mutex lock, as they are locks that provide mutual exclusion 
Solution to the CS Problem : 

Create a semaphore "mutex" initialized to 1 
wait(mutex); 

cs 
signal(mutex); 

• Counting semaphore - integer value can range over an unrestricted domain 
• It is used to control the access to a resource that has multiple instances. 

We Can implement a counting semaphore Sas a binary semaphore .With semaphores we can 
solve various synchronization problems. 

Solution to the CS Problem : 
For example, consider two concurrently running processes: P 1 with a statement SI and P2 with 
a statementS2. Suppose we require that S2 be executed only after Sl has completed. We can 
implement this scheme readily by letting Pl and P2 share a common semaphore synch, initialized 
to 0. 
In process Pl, we insert the statements 

SI; 
signal(synch); 

In process P2, we insert the statements 
wait(synch); 

S2; 
Because synch is initialized to 0, P2 will execute S2 only after Pl has invoked signal(synch), 
which is after statement S 1 has been executed. 

while (S <= 0) 
; II busy wait 

S--; 
} 

• Definition of the signal() operation 
signal(S) { 

6.a) Semaphores (SM) 
• It is a Synchronization tool that provides more sophisticated ways (than Mutex locks) for 

processes to synchronize their activities. 
• Semaphore is represented by S as a integer variable 
• It Can only be accessed via two indivisible (atomic) operation 

o wait() and signal() 
• Definition of the wait() operation 

wait(S) { 



6.b) Banker's Deadlock-avoidance Algorithm (5M) 
The following Data structures are used to implement the Banker's Algorithm: 
Let 'n' be the number of processes in the system and 'm' be the number of resource types. 
1. Available 
It is a 1-D array of size 'm' indicating the number of available resources of each type. 
Available[j] = k means there are 'k' instances of resource type Rj 
2.Max 
It is a 2-d array of size 'n*m' that defines the maximum demand of each process in a system. 
Max[ i, j ] = k means process Pi may request at most 'k' instances of resource type Rj. 
3. Allocation 
It is a 2-d array of size 'n*m' that defines the number of resources of each type currently 
allocated to each process. 
Allocation[ i, j ] = k means process Pi is currently allocated 'k' instances of resource type Rj 
4. Need 
It is a 2-d array of size 'n*m' that indicates the remaining resource need of each process. 
Need [ i, j] = k means process Pi currently needs 'k' instances of resource type Rj 
Need [ i, j ] = Max [ i, j ] - Allocation [ i, j ] 
Allocation specifies the resources currently allocated to process Pi and Need specifies the 
additional resources that process Pi may still request to complete its task. 
Banker's algorithm consists ofa Safety algorithm and a Resource request algorithm. 

Safety Algorithm : 
The algorithm for finding out whether or not a system is in a safe state can be described as 
follows: 
I. Let Work and Finish be vectors oflength 'm' and 'n' respectively. 

Initialize: Work= Available 
Finish[i] = false; for i=l , 2, 3, 4 .... n 

2. Find an i such that both 
2.1 Finish[i] = false 
2.2 Needi <= Work 
if no such i exists goto step ( 4) 

3. Work= Work+ Allocation[i] 
Finish[i] = true 
goto step (2) 

4. if Finish [i] = true for all i 
then the system is in a safe state 

Resource-Request Algorithm : 
Let Requesti be the request array for process Pi. Requesti O] = k means process Pi wants k 
instances of resource type Rj. When a request for resources is made by process Pi, the following 
actions are taken: 
1. If Requesti <= Needi 
Goto step (2) ; otherwise, raise an error condition, since the process has exceeded its maximum 
claim. 
2. If Requesti <= Available 
Goto step (3); otherwise, Pi must wait, since the resources are not available. 
3. Have the system pretend to have allocated the requested resources to process Pi by modifying 
the state as follows: 
Available= Available - Requesti 
Allocationi = Allocationi + Requesti 
Needi = Needi- Requesti 
Example: Any example 



• An algorithm to recover from the deadlock 

Several Instances of a Resource Type 

A deadlock detection algorithm that is applicable to several instances of a resource type. The 

algorithm employs several time-varying data structures that are similar to those used in the 
banker's algorithm. 

• Available: A vector of length m indicates the number of available resources of each type. 

• Allocation: Ann x m matrix defines the number of resources of each type currently allocated 
to each process. 

• Request: An n x m matrix indicates the current request of each process. If Request[i][j] 

equals k, then process P; is requesting k more instances ofresource type Rj. 

Algorithm: 

1. Let Work and Finish be vectors of length m and n, respectively Initialize: 

(a) Work= Available 

(b) For i = 1,2, ... , n, if AllocationiO 0, then Finish[i] = false; otherwise, Finish[i] = true 

2. Find an index isuch that both: 

(a) Finish[i] = false 

(b) RequestiDWork 

If no such i exists, go to step 4 

3. Work= Work+ Allocationi 

Finish[i] = true 

go to step 2 

4. IfFinish[i] == false, for some i, 1 Di On, then the system is in deadlock state. Moreover, 

if 

Finish[i] = false, then Pi is deadlocked 

7.a) Deadlock Detection (SM) 
If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm, 

then a deadlock situation may occur. In this environment, the system may provide: 

• An algorithm that examines the state of the system to determine whether a deadlock has 
occurred 



7.b) Semaphores (SM) 
• It is a Synchronization tool that provides more sophisticated ways (than Mutex locks) for 

processes to synchronize their activities. Semaphore is represented by S as a integer variable 
• It Can only be accessed via two indivisible (atomic) operation 

o wait() and signal() 
The Bonded-Buffer Problem 
• Producer puts information into the buffer, consumer takes it out. The problem arise when the 

producer wants to put a new item in the buffer, but it is already full. The solution is for the 
producer has to wait until the consumer has consumed atleast one buffer. 

• Similarly, if the consumer wants to remove an item from the buffer and sees that the buffer 
is empty, it goes to sleep until the producer puts something in the buffer and wakes it up. 

Synchronization problems: 
1. We must guard against attempting to write data to the buffer when the buffer is full, i.e., the 

producer must wait for an 'empty space'. 
2. We must prevent the consumer from attempting to read data when the buffer is empty; i.e., 

the consumer must wait for 'data available'. 
3. To provide for each of these conditions, we require to employ three semaphores. The 

producer and consumer processes share the following data structure: 
int n; 
semaphore mutex=l; 
semaphore empty=n; 
semaphore full=O; 

• We assume that the pool consists ofn buffers, each capable of holding one item. The mutex 
semaphore provides mutual exclusion for accesses to the buffer pool and is initialized to 
the value I. 

• The empty and full semaphores count the number of empty and full buffers. The 
semaphore empty is initialized to n; the semaphore full is initialized to 0. 

• The code for the producer process is shown below: 
do { 
//produce an item in next_produced 
wait(empty); 
wait(mutex); 
II add next_produced to buffer 
signal(mutex); 
signal(full) ; 
}while (TRUE); 

• The code for the consumer process is shown below: 
do { 
wait(full) ; 
wait (mutex) ; 
II remove an item from buffer to next_consumed 
signal(mutex) ; 
signal(empty) ; 
II consume the item in next_consumed 
}while(TRUE); 



7 0 1 2 0 3 0 4 2 3 0 3 2 2 0 7 0 1 

~~~~ ~ ~~ii ~ m i 
page frames

LAU page-replacement algorithm.

Step Page Frame Contents Page Fault?
1 7 [7] ~Yes
2 0 (7, O] ~Yes
3 (7, 0, l] ~Yes
4 2 (0, 1, 2] ~ Yes (7 out)
5 0 (0, 1, 2] XNo
6 3 (1, 2, 3] ~ Yes (0 out)
7 0 (2, 3, O] ~ Yes (1 out)
8 4 (3, 0, 4] ~ Yes (2 out)
9 2 (0, 4, 2] ~ Yes (3 out)
10 3 (4,2,3] ~ Yes (0 out)
11 0 (2, 3, O] ~ Yes (4 out)
12 3 (2, 0, 3] XNo
13 2 (0, 3, 2] XNo
14 (3, 2, l] ~ Yes (0 out)
15 2 (3, 1, 2] XNo
16 0 (1, 2, O] ~ Yes (3 out)
17 l (2, 0, l] XNo
18 7 (0,), 7] ~ Yes (2 out)
19 0 (0, l, 7] XNo
20 (0, l, 7] XNo

• Total Page Faults = 12
• Total Page Hits= 8
• Final Frame Content = (0, l, 7]

8.a) LRU Page Replacement Algorithm (SM)
• The prediction behind LRU, the Least Recently Used algorithm is that the page that has

not been used in the longest time is the one that will not be used again in the near future.
• LRU replacement associates with each page the time of that page's last use. When a page

must be replaced, LRU chooses that page that has not been used for the longest period of
time. This strategy is the optimal page-replacement algorithm looking backward in time,
rather than forward.

• The following figure illustrates LRU for our sample string, yielding 12 page faults, (as
compared to 15 for FIFO and 9 for OPT.)

8.b) Disadvantages of Single Contiguous Memory Allocation (SM)

Single Contiguous Memory Allocation is the simplest memory management technique where
entire memory (except for the OS) is allocated as one single block to a process. While simple, it
has several drawbacks:
l. Poor Memory Utilization
Only one user process can reside in memory at a time. Remaining memory is wasted even if it
could accommodate other smaller processes.
2. No Multiprogramming
Since only one process is allowed in memory (besides the OS), multiprogramming is not
possible. This leads to low CPU utilization during 1/0 wait times.
3. Wastage of Memory (Internal Fragmentation)
If the process size is smaller than the available memory block, the remaining space remains
unused (internal fragmentation).
4. No Process Isolation
If a program goes rogue, it can potentially overwrite the OS or crash the entire system, as there
is no memory protection.
5. Inefficient for Modern Systems
Modern applications require dynamic memory, multitasking, and complex memory layouts -
which this scheme cannot support.
6. Static Allocation
Memory is allocated at load time and cannot grow or shrink dynamically, making it inflexible.
7. Not Scalable

Not suitable for systems that run multiple concurrent applications.

)3 ()

0

!:STF {jn)

© ,,
v'>

p; i " }-leJ_ Clo,f!),e/ 1 l'o er)/" v, it r})1 el

1.P

CJ 't O ~ o io loo 11-0 /t.,O

Y·Oi) 50,70, /IS",)]O,)/0, 't012CJ1})-

r c F S {!_:rH)

l) Large programs can be written, as virtual space available is huge compared to physical

memory.

2) Less 1/0 required, leads to faster and easy swapping of processes.

3) More physical memory available, as programs are stored on virtual memory, so they occupy

very less space on actual physical memory.

Benefits of having virtual memory (2M)

• Virtual memory involves the separation of logical memory as perceived by users from

physical memory. This separation allows an extremely large virtual memory to be provided

for programmers when only a smaller physical memory is available.

• Virtual memory makes the task of programming much easier, because the programmer non

longer needs to worry about the amount of physical memory available.

• Virtual memory is commonly implemented by demand paging. It can also be implemented

in a segmentation system. Demand segmentation can also be used to provide virtual memory

9.b) Virtual Memory (3M)
• Virtual Memory is a space where large programs can store themselves in form of pages

while their execution and only the required pages or portions of processes are loaded into

the main memory. This technique is useful as large virtual memory is provided for user

programs when a very small physical memory is there.

• In real scenarios, most processes never need all their pages at once, for following reasons :

• Error handling code is not needed unless that specific error occurs, some of which are

quite rare.

• Arrays are often over-sized for worst-case scenarios, and only a small fraction of the

arrays are actually used in practice ..

• Certain features of certain programs are rarely used.

10.a) File Attributes (2M)
A file's attributes vary from one operating system to another but typically consist of these:
Name - The symbolic file name is the only information kept in human-readable form
Identifier - The unique tag (number) identifies file within file system
Type - This information is needed for systems that support different types
Location - This information is a pointer to file location on device
Size - The current size of the file
Protection - Access-control information determines who can do reading, writing, executing
Time, date, and user identification - This information may be kept for creation, last
modification, and last use ..

• The information about all files is kept in the directory structure, which also resides on
secondary storage.

• Typically, a directory entry consists of the file's name and its unique identifier. The
identifier in turn locates the other file attributes.

File Operations (3M)
• A file is an abstract data type. To define· a file properly, we need to consider the operations

that can be performed on files.
• Six basic operations comprise the minimal set of required file operations.
Creating a file: Two steps are necessary to create a file. First, space in the file system must
be found for the file. Second, an entry for the new file must be made in the directory.
Writing a file: To write a file, we have to know two things. One is name of the file name and
second is the information or data to be written on the file, the system searches the entire given
location for the file. If the file is found, the system must keep a write pointer to the location
in the file where the next write is to take place.
Reading a file: To read a file, first of all we searches the directories for the file. If the file is
found, the system needs to keep a read pointer to the location in the file where the next read
is to take place. Once the read has taken place, the read pointer is updated.
Repositioning within a file: The directory is searched for the appropriate entry and the
current-file-position pointer is repositioned to a given value. This operation is also called file
seek.
Deleting a file: To delete a file, first of all search the directory for the named file, then
released the file space and erase the directory entry.
Truncating a file: To truncate a file, remove the file contents only but, attributes are as it is.
• Several pieces of data are needed to manage open files:
Open-file table: contains information about all open files
File pointer: pointer to last read/write location, per process that has the file open
File-open count: counter of number of times a file is open - to allow removal of data from

open-file table when last process closes it
Access rights: Each process opens a file in an access mode. This information is stored on
the per-process table so the operating system can allow or deny subsequent I/0 requests.

File Locking
• Provided by some operating systems and file systems

• Similar to reader-writer locks
• Shared lock similar to reader lock - several processes can acquire concurrently
• Exclusive lock similar to writer lock

10. b) Allocation methods (SM)
• The direct-access nature of disks gives us flexibility in the implementation of files. In

almost every case, many files are stored on the same disk.

• The main problem is how to allocate space to these files so that disk space is utilized

effectively and files can be accessed quickly.

• An allocation method refers to how disk blocks are allocated for files:

• Three major methods of allocating disk space are in wide use:

1) Contiguous Allocation

• Contiguous allocation requires that each file occupy a set of contiguous blocks of disks.

• Contiguous allocation of a file is defined by the address of the first block and length (in

block units) of the file. If the file is n blocks long and starts at location b, then it occupies

blocks b, b + 1, b + 2, ... , b + n - I.

• The directory entry for each file indicates the address of the starting block and the length

of the area allocated for this file.

• Accessing a file that has been allocated contiguously is easy.

• For sequential access, the file system remembers the address of the last block

referenced and, when necessary, reads the next block.

• For direct access to block i of a file that starts at block b, we can immediately access

block b + i.

• Thus, both sequential and direct access can be supported by contiguous allocation.

• Problems with contiguous allocation include

• Finding space for a new file on disk

• Determining how much space is needed for a file.

• Suffers from external fragmentation.

2) Linked Allocation

• Linked allocation solves all problems of contiguous allocation.

• Each file is a linked list of disk blocks; the disk blocks may be scattered anywhere on the

disk. The directory contains a pointer to the first and last blocks of the file.

• For example, a file of five blocks might start at block 9 and continue at block 16, then

block I, then block I 0, and finally block 25.

• Indexed allocation supports direct access, without suffering from external fragmentation,

because any free block on the disk can satisfy a request for more space.

• Each block contains a pointer to the next block. These pointers are not made available to

the user. Thus, if each block is 512 bytes in size, and a disk address requires 4 bytes, then

the user sees blocks of 508 bytes.

• To create a new file, we simply create a new entry in the directory. With linked allocation,

each directory entry has a pointer to the first disk block of the file. This pointer is initialized

to null to signify an empty file. The size field is also set to 0.

• A write to the file causes the free-space management system to find a free block, and this

new block is written to and is linked to the end of the file.

• To read a file we simply read blocks by following the pointers from block to block.

• There is no external fragmentation with linked allocation, and any free block on the free-

space list can be used to satisfy a request.

3) Indexed Allocation

• Indexed allocation brings all the pointers together into one location: the index block.

• Each file has its own index block, which is an array of disk-block addresses. The ith entry

in the index block points to the i1h block of the file.

• The directory contains the address of the index block. To find and read the ith block, we

use the pointer in the i1h block is first written, a block is obtained from the free-space

manager, and its address is put in the i1h index-block entry.

fflo start ond
jeep 9 25

dirooto,y

11.a) File Sharing (SM)
• Once multiple users are allowed to share files, the challenge is to extend sharing to multiple

file systems, including remote file systems.
Multiple Users
• Given a directory structure that allows files to be shared by users, the system must mediate

the file sharing. The system can either allow a user to access the files of other users by
default or require that a user specifically grant access to the files.

• Most systems have evolved to use the concepts of file (or directory) owner (or user) and
group. The owner is the user who can change attributes and grant access and who has the
most control over the file. The group attribute defines a subset of users who can share
access to the file.

• The owner and group IDs of a given file are stored with the other file attributes.
• When a user request an operation on a file, the user ID can be compared with the owner

attribute to determine if the requesting user is the owner of the file.
• The result indicates which permissions are applicable. The system then applies those

permissions to the requested operation and allows or denies it.
1. Remote File Systems
• Through the evolution of network and file technology, remote file-sharing methods have

changed.
• The first implemented method involves manually transferring files between machines via

programs like ftp. The second major method uses a distributed file system (DFS) in which
remote directories are visible from a local machine. In some ways, the third method, the
World Wide Web, is a revision to the first.

2. The Client-Server Model
• Remote file systems allow a computer to mount one or more file systems from one or more

remote machines. In this case, the machine containing the files is server, and the machine
seeking access to the files is the client.

• Generally the server declares that a resource is available to clients and specifies exactly
which resource and exactly which clients.

• A server can serve multiple clients, and a client can use multiple servers, depending on the
implementation details of a given client - server facility.

3. Distributed Information Systems
• To make client-server systems easier to manage, distributed information systems, also

known as distributed naming services, provide unified access to the information needed
for remote computing.

• The domain name system (DNS) provides host-name-to-network-address translations for
the entire Internet. Other distributed information systems provide user
name/password/user ID/group ID space for a distributed facility.

• The association between a process and a domain may be either static, if the set of
resources available to the process is fixed throughout the process's lifetime, or dynamic.

• If the association is dynamic, a mechanism is available to allow domain switching,
enabling the process to switch from one domain to another.

• We may also want to allow the content of a domain to be changed. If we cannot change
the content of a domain, we can provide the same effect by creating a new domain with
the changed content and switching to that new domain when we want to change the
domain content.

• A domain can be realized in a variety of ways:
• Each user may be a domain. In this case, the set of objects that can be accessed

depends on the identity of the user. Domain switching occurs when the user is
changed-generally when one user logs out and another user logs in.

• Each process may be a domain. In this case, the set of objects that can be accessed
depends on the identity of the process. Domain switching occurs when one process
sends a message to another process and then waits for a response.

• Each procedure may be a domain. In this case, the set of objects that can be accessed
corresponds to the local variables defined within the procedure. Domain switching
occurs when a procedure call is made.

Figure 17.4 System with three protection domains.

< 03, {read, write} >
< 01, {read, write) >
< 02, {execute}>

11. b) Domain of protection (SM)
Domain Structure
• A process operates within a protection domain, which specifies the resources that the

process may access.
• Each domain defines a set of objects and the types of operations that may be invoked on

each object. The ability to execute an operation on an object is an access right.
• A domain is a collection of access rights, each of which is an ordered pair

<object-name, rights-set>
• For example, if domain D has the access right <file F, {read,write}>, then a process

executing in domain D can both read and write file F.
• Domain may share access rights. For example, figure below, we have three domains:

D1,D2 and DJ. The access right <04, {print}> is shared by D2 and DJ, implying that a
process executing in either of these two domains can print object 04.

