A simple beam of 4m span is carrying a point L4 CO3 10 M load of 40 kN at a distance of 3m from the left end. Calculate the slope at the two supports and deflection under the load. Take : EI = $2.6 \times 10^7 \text{ N-m}^2$. **UNIT-V** 10 A cylindrical shell 3 m long which is closed L3 CO4 10 M at the ends has an internal diameter of 1 m and a wall thickness of 15 mm. Calculate the circumferential and longitudinal stresses induced and also change in the dimensions of the shell if it is subjected to an internal pressure of 1.5 MN/m². Take: E= 200 GN/m² and $\mu = 0.3$ OR Calculate the safe crippling load on a hollow L3 CO4 10 M cast iron column (one end rigidly fixed and the other hinged) of 150 mm external diameter, 100 mm internal diameter and 10 m

length. Use Euler's formula with a factor of

safety of 5, and $E = 95 \text{ GN/m}^2$.

Code: 23ME3301

II B.Tech - I Semester - Regular Examinations - DECEMBER 2024

MECHANICS OF SOLIDS (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.

4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO - Course Outcome

PART - A

		BL	CO
1.a)	Define Young's Modulus.	L1	CO1
1.b)	Define Principal stress.	L1	CO1
1.c)	Define Bending Moment.	L1	CO1
1.d)	Write Torsion equation.	L1	CO1
1.e)	Define Pure bending.	L1	CO1
1.f)	What is the ratio of maximum to average shear stress in a rectangular section?	L2	CO1
1.g)	Write the governing differential equation of beams.	L1	CO1
1.h)	What is the maximum deflection when a point		
	load 'W' is acting at the middle of the simply supported beam of length 'L'.	L2	CO1
1.i)	Define circumferential stress in thin cylinders.	L1	CO1
1.j)	What is slenderness ratio?	L2	CO1

PART – B

		BL	СО	Max.
				Marks
	UNIT-I			
2	A tie bar has enlarged ends of square section		CO1	10 M
	60 mm x 60 mm as shown in fig. If the			
	middle portion of the bar is also of square			
	section of 5mm x 5mm. Find the stress in			
	each section and the total extension of the bar.			
	Take $E = 2 \times 10^5 \text{ N/mm}^2$.			
	60 mm x 60 mm			
	87.5 kN 5 ppp x 5 ppp			
	5mm x 5mm			
	$\left \begin{array}{c} \overleftarrow{50} \stackrel{\longrightarrow}{mm} \right \left \begin{array}{c} \overleftarrow{50} \stackrel{\longrightarrow}{mm} \right \end{array}$			
	300 mm			
	OR			
3	The principal stresses at a point across two	L3	CO1	10 M
	perpendicular planes are 75 MN/m ² (tensile)			
	and 35 MN/m ² (tensile) and shear stress is			
	zero. Find the stresses on a plane at 20° with			
	the major principal plane.			
		-		
	UNIT-II			
4	Draw SFD and BMD for the following beam.	L4	CO2	10 M
	1 kN 2 kN/m 1 kN			
	1			
	B E D A			
	4 lm→ 4 lm→ 2 m→ 1 m→			
	OR			

5	What must be the length of a 5 mm diameter aluminum wire so that it can be twisted	L3	CO2	10 M
	through one complete revolution without			
	exceeding a shearing stress of 42 MN/m ² ?			
	Take: $G = 27 \text{ GN/m}^2$.			
	UNIT-III			
6	A hollow circular bar having outside diameter	L3	CO3	10 M
	twice the inside diameter is used as a beam.			
	From the bending moment diagram of the			
	beam, it is found that the bar is subjected to a			
	bending moment of 40 kNm. If the allowable			
	bending stress in the beam is to be limited to			
	100 MN/m ² , find the inside diameter of the			
	bar.			
OR				
7	A simply supported beam of 2-m span carries	L3	CO3	10 M
	a uniformly distributed load of 140 kN per m			
	over the whole span. The cross-section of the			
	beam is a T-section with a flange width of			
	120 mm, web and flange thickness of 20 mm			
	and overall depth of 160 mm. Determine the			
	maximum shear stress in the beam and draw			
	the shear stress distribution for the section.			
	TIMITE IN			
0	UNIT-IV	L4	CO3	10 M
8	A simply supported beam 5 m long carries	L4	COS	10 101
	concentrated loads of 10 kN each at points			
8.	Im from the ends. Calculate: (i) Maximum			
	slope and deflection of the beam, and			
	(ii) Slope and deflection under each load.			
_	Take : EI = $1.2 \times 10^4 \text{ kNm}^2$.			
	OR			

II B. Tech – I Semester – Regular Examinations – December – 2024 Scheme of Evaluation 23ME3301 – Mechanics of Solids

231112333	
PART – A	
1. Each question carries 1 mark	1 X 10 = 10M
DART R	
PART – B	
<u>Unit – 1</u>	3 M
2. Stress equation	3 M
Deflection equation	1 M x 3 sections = 3M
Stress and defection calculation in each section	1 M
Total elongation	T 141
(OR)	3 M
3. Given data	2 M
Normal stress on oblique plane formula	2 M
Calculation of Normal stresses	2 M
Shear stress on Oblique plane formula	1 M
Calculation of Shear stress	1 IVI
Unit – II	2 M
4. Given diagram	1 M x 4 regions = 4M
Shear force in each region 1 M Bending moment in each region 1 M	1 M x 4 regions = 4 M
(OR)	
	3 M
Given data Corresponding formula	4 M
Calculation of length	3 M
Calculation of length	
Unit – III	
6. Given data	3 M
Calculation of y	2 M
Calculation of I	2 M
Calculation of inside diameter	3 M
(OR)	
7. Simply Supported Beam diagram	1 M
Shear force value	1 M
Calculation of CG for I cross section	2 M
Calculation of Mol for I cross section	2 M
entropics in the second	

	Shear stress at Top and bottom	1	M			
	Shear stress at Junction of flange and web	2	M			
	Shear stress distribution diagram	1	M			
	<u>Unit – IV</u>					
8.	SSB with loads diagram	1	Μ .			
	Reactions	2	M			
	Bending moment equation	2	M			
	Differential equation	1	M			
	Solution of slope and deflection with constants	1	M			
	Constant values using boundary conditions	1	M			
	Maximum slope and deflection	1	M			
	Slope and deflection under each load	1	M			
	(Note: Double Integration or Maculay's or Moment area any method can be					
	(OR)					
9.	SSB with load diagram	1	M			
	Reactions	2	Μ ,,			
	Bending moment equation	2	M			
	Differential equation	11	M			
	Solution of slope and deflection with constants	11	M			
	Constant values using boundary conditions	11	M			
	Slope at the supports	11	M			
	Deflection under the load	11	M			
	(Note: Double Integration or Maculay's or Mome	ent area	any method can be used)			
	<u>Unit – V</u>					
10.	Given data	2 [M			
	Circumferential and longitudinal stress formula	2 1	M			
	Calculation of stresses	2 1	M			
	Change in length formula	11	M			
	Calculation of change in length	11	M			
	Change in diameter formula	11	Л			
	Calculation of change in diameter	1 N	√ I			
	(OR)					
11.	Given data	3 N	Л			
	Crippling load formula	3 N	Л			
	Calculation of Moment of Inertia	2 N	Λ			

1 M

1 M

Calculation of Equivalent length

Calculation of Crippling load

2/2

II B. Tech- I Semester- Regular 23ME3301 reechanics of Solids Solution) to

1) a) The gratio between to striss to strain within Elastic limit is Young's modulus of Elasticits.

- . The maximum normal stress 2)6)
 - . The standsten on printipal plane . The Stren on plane where shear stren is Zew

- 3) c). The algebric sum of moments of all the sorces acting on a one side of section J-> Polar MI
- of a beam. L> longenth = T - Torsion 7-7 radius 07 augle of lois T = GO = 7 rigidity C7 Shears Fren 4) 4) G -> Modelin of
 - The load on a beam such that shear force in Zevo (or) hending moment is constant. 2)
 - max. Shear Stren =1.5 Alleg. Shear S Fres 4)

b)
$$\frac{dz^2}{\sqrt{8EI}}$$

. The Stresses that are acting perpendicular to the length (or) along the radius. i)

The gratio between length to least gradies of gyration of a colemn CA known as slenderness (i >= E. nativ

PART-B

PART-B

RESONNE

SOUND

ST. SKID

SOUND

B

E = 2 × 10 mm

SOUND

FOR SACKION AB'- Show
$$S_B = \frac{P}{A} = \frac{87.5 \times 10}{3600}$$

LETTER B

CH. SOUND

B

E = 2 × 10 mm

SOUND

E = 2 × 10 mm

AB'- Show $S_B = \frac{PL}{AB} = \frac{87.5 \times 10}{3600 \times 250}$

LETTER B

CH. SOUND

B

E = 2 × 10 mm

SOUND

: for sech on BC

BC

$$87.5 \times 10^{3}$$
 $E = 200 \text{ mm}$
 87.5×10^{3}
 $E = 200 \text{ mm}$
 $87.5 \times 10^{3} = 3500 \text{ m/p. dm}$
 $86 = \frac{9}{4} = \frac{87.5 \times 10^{3} \times 200}{2.5 \times 10^{3} \times 200} = 3.5 \text{ m/m}$
 $E = \frac{9}{2.5 \times 10^{3}} = \frac{87.5 \times 10^{3} \times 200}{2.5 \times 10^{3}} = \frac{3.5 \text{ m/m}}{2.5 \times 10^{3}}$
 $E = \frac{9}{2.5 \times 10^{3}} = \frac{87.5 \times 10^{3}}{2.5 \times 10^{3}} = \frac{3.5 \text{ m/m}}{2.5 \times 10^{3}} =$

Sechian CD

3)

87.5 (20 =
$$\frac{p}{A} = \frac{87.5 \times 10}{3600} = \frac{24.31 \text{ m/s}A}{33600}$$

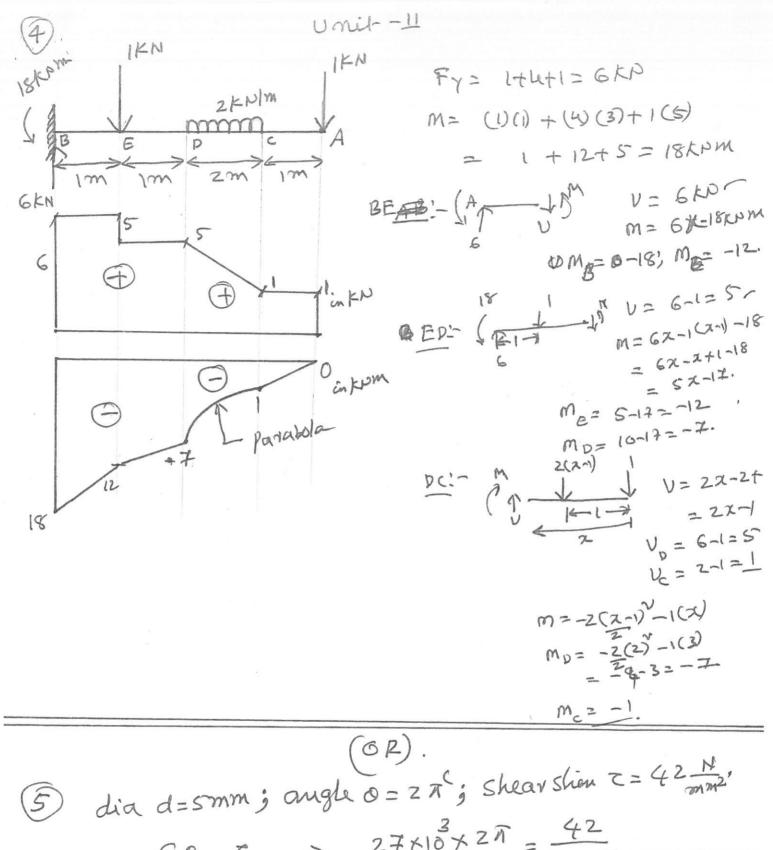
Stress $60 = \frac{p}{A} = \frac{87.5 \times 10^3 \times 50}{3600 \times 2 \times 10^5} = \frac{6.076 \times 10^3}{3600 \times 2 \times 10^5}$
detlection $60 = \frac{p}{A} = \frac{87.5 \times 10^3 \times 50}{3600 \times 2 \times 10^5} = \frac{6.076 \times 10^3}{3600 \times 2 \times 10^5}$

Net elongation &= 6.076×103 +3.5 + 6.076×103

$$(OP)$$

$$= 75 \frac{N}{mm^2}, \sigma_y = 35 \frac{N}{mm}, \tau_{xy} = 0; O = 20$$

$$= 75 \frac{N}{mm^2}, \sigma_y = 35 \frac{N}{mm}, \tau_{xy} = 0; O = 20$$

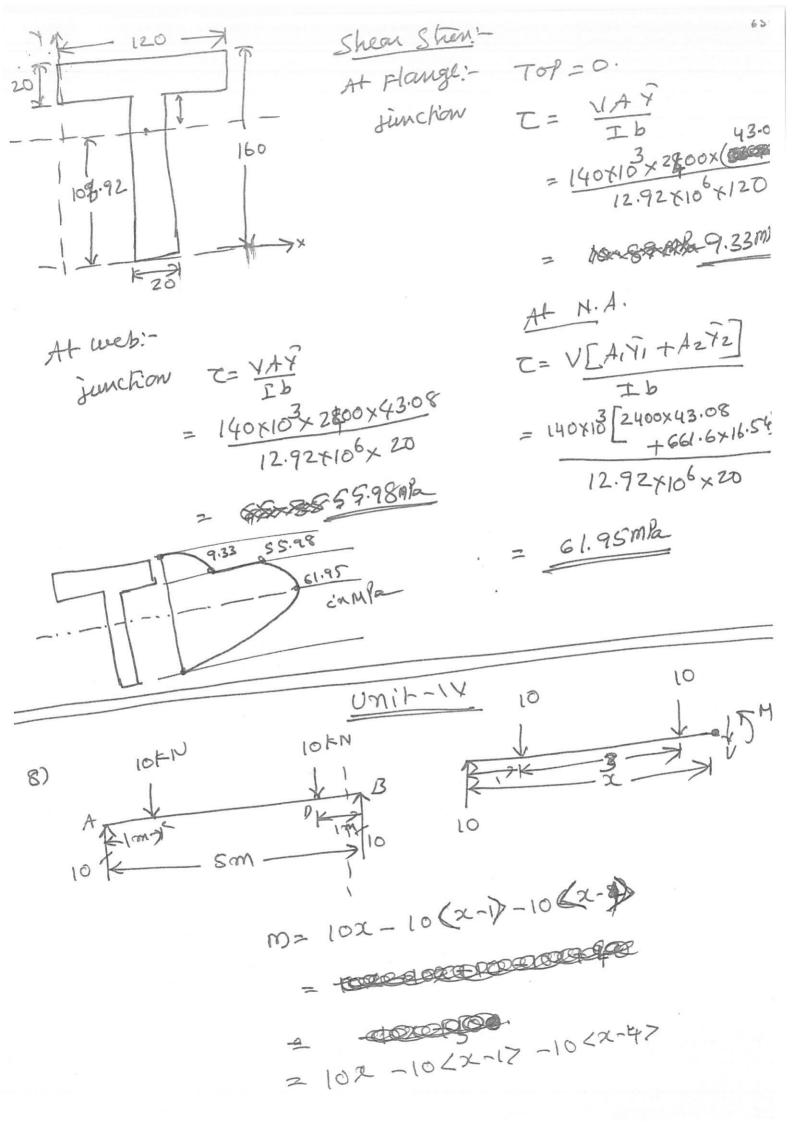

$$\frac{1}{2} = \frac{1}{2} = \frac{1$$

$$= \frac{15+35}{2} + \left(\frac{75-35}{2}\right) \cos 40 + 0$$

$$= \frac{75+35}{2} + (75-35) (3740+0)$$

$$= \frac{75+35}{2}$$

A SO SO PERON


dia d=5mm; angle
$$0=2\pi$$
; Shear shien $z=42\frac{\pi}{2mm^2}$,
$$\frac{GO}{L}=\frac{z}{\delta} \Rightarrow \frac{27\times10^3\times2\pi}{L}=\frac{42}{2.5}$$

$$\frac{1=10.09\times10^3\text{ mm}}{L=10.09\text{ m}}$$

$$=) \qquad L=10.09\text{ m}$$

Unil-I

outside dia do= 2di 6) bending moment M = 40×10 Now, 6= MY.; Y= \frac{do.= de}{T}. o = 100 m/a. bending shan where I = T (do - di) = Tr (16 di - di 4) = 15 T. di = 0.7363 di 4. 40×10 × di 0. ×363di4 di3= 40×106 di= 81.59mmL and do= 163.19mm Ann

ETY =
$$-102 + 102 - 102$$

ill'e Slope and deflection at (G=1) EI 9/201 = -10(1) +0+0+20 $|\dot{y}|_{\chi=1} = \frac{-5}{1.2710^4} = -\frac{4.17\times10^4}{1.2\times10^4}$ EI 9/2=1 = -10(1) + 0+0+ 20 = 18.33. $5|_{\alpha=1} = \frac{18.33}{1.2\times10^4} = 1.53\times10^{-9}$. Slope and deflection at D (x=4m). $EI\dot{9}|_{x=4} = \frac{-10(16)}{2} + \frac{10(9)}{2} + \frac{20}{2}$ = -80+45+20 = -20. 9/2=4= 1.25/04= 1.66×103 rad. $EI 9/2=4 = \frac{-10(1064)}{6} + \frac{10(27)}{6} + \frac{20(4)}{6}$

$$|2=4| = \frac{-10(164)}{6} + \frac{10(27)}{6} + \frac{1}{6} = \frac{18.33}{1.28104} = \frac{18.33}{1.28104} = \frac{18.33}{1.28104} = \frac{18.33}{1.28104} = \frac{1}{1.28104} = \frac{1}{1.281$$

Reach'ow: Ru= (40)(1)=10F1 =10 =3m = 3c 5/=30 9) RB = (40)(3) = 30x 1 3 2 1 4 5 M m= 102-40(2-3) EIY= -102+4062=3> EIY= -10.22+ 40 (2-3) + 41. EI= 2.670 NM2 = 2.6×10 4 Krom² CIU= -10. 23 + 40 (2-373 + (1x+(2. $\Rightarrow \circ = \circ + \circ + \circ + ^{(2)} \Rightarrow ^{(2=0)}$ B. c's are at 2=0; y=0 $0 = \frac{-10(64) + 40(1)^{3} + 4^{6}}{6}$ at 2= 4; 5=0 0=-106.67+6.67+449 =1 <1=25. $EI\dot{y}|_{\chi=0}=0+0+25=3$ $\dot{y}=\frac{25}{2.6\times104}=\frac{9.61\times10}{2.6\times104}$ Slope at SUPPONTS. $EI\dot{y}_{z=4}=\frac{10(16)}{2}+\frac{40(1)}{2}+2S;=\frac{3}{2.6710}=-\frac{1.357}{2.6710}=\frac{-1.357}{2.6710}$ reflection under the load. $EI5|_{2=3} = -10(27) + 0 + 3(25) + 0$:. 5/2=3 = 1.154mm (on) 1.154x103mm

Unil--V

L = 3000mm length of cylinder A = 1000 mm 10) Internal diameter E = 15mm wall thickness p = 1.5 N/mm2. Internal pressure E = 200×10 mm². Circum ferential stren 012 pd 26 Longitudinal Stren 62 = = (4)(15) = ZSMPa 8d = Pd (2-M. (dia) = (4)(15)(2×105 (1000) change in dia = 0.2125 mm 81 = Pd (1-2M). (Lewyth) = (1.5)(1000) (1-0.6)(3000) (4)(15)(24105) change in length = 0.15 MM

11).

$$\therefore R_{\gamma} = (\tilde{\chi})(95\chi_{1}3)(19.94\chi_{1}0)$$

$$(\tilde{\chi}, 07\chi_{1}3)^{2}$$

Per 2 374.03 KN