Code: 23IT3301

II B.Tech - I Semester - Supplementary Examinations - MAY 2025

ADVANCED DATA STRUCTURES AND ALGORITHMS (INFORMATION TECHNOLOGY)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

PART – A

IAKI - A							
1.a)	List the characteristics of an algorithm.						
1.b)	Delete 250 from the following B Tree and draw resultant						
	B Tree.						
	0070 , 0100 , 0300						
	0000 0020 0080 0090 0200 0250 0400 0500 0600						
1.c)	List graph traversal techniques.						
1.d)	Write the importance of priority queue.						
1.e)	Write recurrence relation for Quick sort in both best and						
	worst cases.						
1.f)	Write time and space complexities of Prim's algorithm.						
1.g)	Define Travelling salesman problem.						
1.h)	How can we say that a particular problem can be solvable						
	by using Dynamic programming?						
1.i)	List any two valid differences between back tracking and						
	branch and bound.						
1.j)	Define non-polynomial time algorithm.						

PART - B

			Max.							
			Marks							
	UNIT-I									
2	2 a) Discuss the role of asymptotic notations in analyzi									
		algorithms. Determine the following function using								
		different notations: $f(n) = 4 n^2 + 2 n + 5$.								
	b)	List and explain different operations of AVL Trees.								
		OR								
3	a)	Compare the time complexity of searching in a								
	B-tree with that in a binary search tree with an									
	example.									
	b)	Construct a B Tree of order 4 from the following	5 M							
		elements. 1,4,7,10,17,21,31,25,19,20,28,42								
	I	UNIT-II								
4	a)									
		20, 15, 25, 10, 5, 30, 22, 28, 7, 14, 19, 9	5 M							
	b) Write an algorithm to demonstrate the working of									
	Heapify process and analyze its time complexity.									
	T	OR								
5	a)	Discuss how graphs be represented in data	5 M							
		structures?	5 M							
	b) Outline the steps of the BFS algorithm. Discuss how									
		Queue is used in BFS algorithm.								
	UNIT-III									
6										
	5 a) Find the minimum cost spanning tree (MST) from 5 Norther the given graph using Kruskal's algorithm. Clearly									

		demonstrate each step in the process with proper							
		explanation.							
		G 7 A 5 F 15 15 16 H 15 18 H							
	1 \								
	b)	Write an algorithm for Merge sort and analyze its 5 M							
	time and space complexities.								
	OR								
7	a)	Consider the following list of item weights and its 5 M							
		profits.							
		Item 1 2 3 4 5 6 7							
		Weight (Kg) 6 5 4 7 4 7 2							
		Profit 10 5 15 10 6 18 3							
		Also consider a knapsack with maximum capacity of							
		20kgs and apply the fractional knapsack algorithm to							
		fill the knapsack with the list of items and their							
		weights for getting maximum profit. Finally, find the							
		maximum possible profit.							
	b)	Define Master's theorem. Solve the following 5 M							
	ŕ	recurrence relation using Master's theorem.							
		$T(N) = 2T\left(\frac{N}{2}\right) + \left(\frac{N}{\log^2 N}\right)$							
	<u> </u>	<u> </u>							
	<u> </u>	UNIT-IV							
8	a)	Given three keys with associated search 5 M							
		probabilities, construct the DP table for an optimal							

		binary search	ı tre	e. U	se th	ne ke	evs	$K = \{10, 20, 30\}$	
		with probabilities $P = \{0.2, 0.5, 0.3\}$. Show the							
		process and the final DP table.							
	b)	Define shortest path algorithm? How all pair shortest							5 M
		path is diffe	rent	fror	n sii	ngle-	sour	ce shortest path?	
	Explain with example.								
					O	R			
9	a)	Analyze the time and space complexity of the					5 M		
		dynamic pro	grar	nmiı	ng s	oluti	on	to the travelling	
		salesman pro	blen	1.					
	b)	b) Derive the recurrence relation used in the dynamic							5 M
		1 0	_	_				e the travelling	
		salesman problem. Explain how it helps in							
		constructing	the s	olut	ion.				
					UNI	T 1/			
10	Sal	ve the travelli	na c					using Branch and	10 M
10			_			-		llowing adjacency	10 11
		rix. Draw stat	_	•		or th	C IO	nowing adjacency	
	IIIa	Jaw Stat	_ •			8	9 -	n l	
			12	~	28 14	2	1		
		7	1	3	∞ 16 5	1	2		
			17	4	16	∞	1		
			_14	2	5	16	∞ _	J	
					O				
11	a)	_			_	_		m for solving the	5 M
		Graph Coloring problem. Discuss the efficiency of							
	the algorithm.								
	1 1							5 M	
	Branch and Bound approach when applied to the								
	Assignment Problem?								