
Coding 1

Coding and Unit Testing

UNIT -5

Coding 2

Coding

 Goal is to implement the design in best
possible manner

 Coding affects testing and maintenance

 As testing and maintenance costs are high,
aim of coding activity should be to write code
that reduces them

 Hence, goal should not be to reduce coding
cost, but testing and maint cost, i.e. make
the job of tester and maintainer easier

Coding 3

Coding…

 Code is read a lot more

 Coders themselves read the code many times for
debugging, extending etc

 Maintainers spend a lot of effort reading and
understanding code

 Other developers read code when they add to
existing code

 Hence, code should be written so it is easy to
understand and read, not easy to write!

Coding 4

Coding…

 Having clear goal for coding will help achieve
them

 Weinberg experiment showed that coders
achieve the goal they set
 Diff coders were given the same problem

 But different objectives were given to diff
programmers – minimize effort, min size, min
memory, maximize clarity, max output clarity

 Final programs for diff programmers generally
satisfied the criteria given to them

Coding 5

Weinberg experiment..

Resulting Rank (1=best)

O1 o2 o3 o4 o5

Minimize Effort (o1)

Minimize prog size (o2)

Minimize memory (o3)

Maximize code clarity (o4)

Maximize output clarity (o5)

1 4 4 5 3

2-3 1 2 3 5

5 2 1 4 4

4 3 3 2 2

2-3 5 5 1 1

Coding 6

Programming Principles

 The main goal of the programmer is write
simple and easy to read programs with few
bugs in it

 Of course, the programmer has to develop it
quickly to keep productivity high

 There are various programming principles
that can help write code that is easier to
understand (and test…)

Coding 7

Structured Programming

 Structured programming started in the
70s, primarily against indiscriminate use
of control constructs like gotos

 Goal was to simplify program structure
so it is easier to argue about programs

 Is now well established and followed

Coding 8

Structured Programming…

 A program has a static structure which is the
ordering of stmts in the code – and this is a
linear ordering

 A program also has dynamic structure –order
in which stmts are executed

 Both dynamic and static structures are
ordering of statements

 Correctness of a program must talk about the
dynamic structure

Coding 9

Structured Programming…

 To show a program as correct, we must show that its
dynamic behavior is as expected

 But we must argue about this from the code of the
program, i.e. the static structure

 I.e program behavior arguments are made on the
static code

 This will become easier if the dynamic and static
structures are similar

 Closer correspondence will make it easier to
understand dynamic behavior from static structure

 This is the idea behind structured programming

Coding 10

Structured Programming…

 Goal of structured programming is to
write programs whose dynamic
structure is same as static

 I.e. stmts are executed in the same
order in which they are present in code

 As stmts organized linearly, the
objective is to develop programs whose
control flow is linear

Coding 11

Structured Programming…

 Meaningful programs cannot be written as
seq of simple stmts

 To achieve the objectives, structured
constructs are to be used

 These are single-entry-single-exit constructs

 With these, execution of the stmts can be in
the order they appear in code

 The dynamic and static order becomes same

Coding 12

Structured Programming

 Main goal was to ease formal verification of
programs

 For verification, the basic theorem to be
shown for a program S is of the form
 P {S} Q

 P – precondition that holds before S executes

 Q – postcondition that holds after S has
executed and terminated

Coding 13

Structured Prog – composing
proofs

 If a program is a sequence of the type S1; S2
then it is easier to prove from proofs of S1
and S2

 Suppose we have shown P1 {S1} Q1 and R2
{S2} Q2

 Then, if we can show Q1 => R2, then we can
conclude P1 {S1; S2} Q2

 So Structured Prog allows composing proofs
of larger programs from proofs of its parts

Coding 14

Structured Programming…

 Each structured construct should also have a
clear behavior

 Then we can compose behavior of stmts to
understand behavior of programs

 Hence, arbitrary single-entry-single-exit
constructs will not help

 It can be shown that a few constructs like
while, if, and sequencing suffice for writing
any type of program

Coding 15

Structured Programming…

 SP was promulgated to help formal
verification of programs

 Without linear flow, composition is hard and
verification difficult

 But, SP also helps simplify the control flow of
programs, making them easier to understand
and argue about

 SP is an accepted and standard practice
today – modern languages support it well

Coding 16

Information Hiding

 Software solutions always contain data
structures that hold information

 Programs work on these DS to perform the
functions they want

 In general only some operations are
performed on the information, i.e. the data is
manipulated in a few ways only

 E.g. on a bank’s ledger, only debit, credit,
check cur balance etc are done

Coding 17

Information Hiding…

 Information hiding – the information should
be hidden; only operations on it should be
exposed

 I.e. data structures are hidden behind the
access functions, which can be used by
programs

 Info hiding reduces coupling

 This practice is a key foundation of OO and
components, and is also widely used today

Coding 18

Some Programming Practices

 Control constructs: Use only a few
structured constructs (rather than using
a large no of constructs)

 Goto: Use them sparingly, and only
when the alternatives are worse

 Info hiding: Use info hiding

 Use-defined types: use these to make
the programs easier to read

Coding 19

Some Programming Practices..

 Nesting: Avoid heavy nesting of if-then-
else; if disjoint nesting can be avoided

 Module size: Should not be too large –
generally means low cohesion

 Module interface: make it simple

 Robustness: Handle exceptional
situations

 Side effects: Avoid them, document

Coding 20

Some Programming Practices..

 Empty catch block: always have some default
action rather than empty

 Empty if, while: bad practice

 Read return: should be checked for
robustness

 Return from finally: should not return from
finally

 Correlated parameters: Should check for
compatibility

Coding 21

Coding Standards

 Programmers spend more time reading code than
writing code

 They read their own code as well as other
programmers code

 Readability is enhanced if some coding conventions
are followed by all

 Coding standards provide these guidelines for
programmers

 Generally are regarding naming, file organization,
statements/declarations, …

 Some Java conventions discussed here

Coding 22

Coding Standards…

 Naming conventions
 Package name should be in lower case

(mypackage, edu.iitk.maths)
 Type names should be nouns and start with

uppercase (Day, DateOfBirth,…)
 Var names should be nouns in lowercase; vars

with large scope should have long names; loop
iterators should be i, j, k…

 Const names should be all caps
 Method names should be verbs starting with lower

case (eg getValue())
 Prefix is should be used for boolean methods

Coding 23

Coding Standards…

 Files

 Source files should have .java extension

 Each file should contain one outer class
and the name should be same as file

 Line length should be less than 80; if
longer continue on another line…

Coding 24

Coding Standards…

 Statements
 Vars should be initialized where declared in the

smallest possible scope

 Declare related vars together; unrelated vars
should be declared separately

 Class vars should never be declared public

 Loop vars should be initialized just before the loop

 Avoid using break and continue in loops

 Avoid executable stmts in conditionals

 Avoid using the do… while construct

Coding 25

Coding Standards…

 Commenting and layout
 Single line comments for a block should be

aligned with the code block

 There should be comments for all major
vars explaining what they represent

 A comment block should start with a line
with just /* and end with a line with */

 Trailing comments after stmts should be
short and on the same line

Coding 26

Incrementally Developing
Code

 Coding starts when specs for modules from
design is available

 Usually modules are assigned to
programmers for coding

 In top-down development, top level modules
are developed first; in bottom-up lower levels
modules

 For coding, developers use different
processes; we discuss some here

Coding 27

An Incremental Coding Process

 Basic process: Write code for the
module, unit test it, fix the bugs

 It is better to do this incrementally –
write code for part of functionality, then
test it and fix it, then proceed

 I.e. code is built code for a module
incrementally

Coding 28

Coding 29

Test Driven Development

 This coding process changes the order
of activities in coding

 In TDD, programmer first writes the
test scripts and then writes the code to
pass the test cases in the script

 This is done incrementally

 Is a relatively new approach, and is a
part of the extreme programming (XP)

Coding 30

TDD…

 In TDD, you write just enough code to pass
the test

 I.e. code is always in sync with the tests and
gets tested by the test cases
 Not true in code first approach, as test cases may

only test part of functionality

 Responsibility to ensure that all functionality
is there is on test case design, not coding

 Help ensure that all code is testable

Coding 31

TDD…

 Focus shifts to how code will be used as test
cases are written first
 Helps validate user interfaces specified in the

design
 Focuses on usage of code

 Functionality prioritization happens naturally
 Has possibility that special cases for which

test cases are not possible get left out
 Code improvement through refactoring will be

needed to avoid getting a messy code

Coding 32

Coding 33

Pair Programming

 Also a coding process that has been proposed
as key practice in XP

 Code is written by pair of programmers rather
than individuals
 The pair together design algorithms, data

structures, strategies, etc.
 One person types the code, the other actively

reviews what is being typed
 Errors are pointed out and together solutions are

formulated
 Roles are reversed periodically

Coding 34

Pair Programming…

 PP has continuous code review, and reviews
are known to be effective

 Better designs of algos/DS/logic/…

 Special conditions are likely to be dealt with
better and not forgotten

 It may, however, result in loss of productivity

 Ownership and accountability issues are also
there

 Effectiveness is not yet fully known

Coding 35

Managing Evolving Code

 During coding process, code written by
a programmer evolves

 Code by different programmers have to
be put together to form the system

 Besides normal code changes,
requirement changes also cause chg.

 Evolving code has to be managed

Coding 36

Source Code Control and Built

 Source code control is an essential step
programmers have to do

 Generally tools like CVS, VSS are used
 A tool consists of repository, which is a

controlled directory structure
 The repository is the official source for all the

code files
 System build is done from the files in the

repository only
 Tool typically provides many commands to

programmers

Coding 37

Source code control…

 Checkout a file: by this a programmer gets a
local copy that can be modified

 Check in a file: changed files are uploaded in
the repository and change is then available to
all

 Tools maintain complete change history and
all older versions can be recovered

 Source code control is an essential tool for
developing large projects and for coordination

Coding 38

Refactoring

 As code evolves, the design becomes
more complex

 Refactoring is a technique to improve
existing code by improving its design
(i.e. the internal structure)

 In TDD, refactoring is a key step

 Refactoring is done generally to reuce
coupling or increase cohesion

Coding 39

Refactoring…

 Involves changing code to improve
some design property

 No new functionality is added

 To mitigate risks associated with
refactoring two golden rules
 Refactor in small steps

 Have test scripts available to test that the
functionality is preserved

Coding 40

Refactoring…

 With refactoring code is continually
improving; refactoring cost is paid by
reduced maint effort later

 There are various refactoring patterns
that have been proposed

 A catalog of refactorings and how to do
them is available online

Coding 41

Refactoring…

 “Bad smells” that suggest that refactoring
may be desired
 Duplicate code

 Long method

 Long class

 Long parameter list

 Swith statement

 Speculative generality

 Too much communication between objects

 …

Coding 42

Unit Testing

Coding 43

UT and Verification

 Code has to be verified before it can be used
by others

 Here we discuss only verification of code
written by a programmer (system verification
is discussed in testing)

 There are many different techniques – two
most commonly used are unit testing and
inspection

 We will discuss these here

Coding 44

Unit Testing

 Is testing, except the focus is the module a
programmer has written

 Most often UT is done by the programmer
himself

 UT will require test cases for the module –
will discuss in testing

 UT also requires drivers to be written to
actually execute the module with test cases

 Besides the driver and test cases, tester
needs to know the correct outcome as well

Coding 45

Unit Testing…

 If incremental coding is being done, then
complete UT needs to be automated

 Otherwise, repeatedly doing UT will not be
possible

 There are tools available to help

 They provide the drivers

 Test cases are programmed, with outcomes being
checked in them

 I.e. UT is a script that returns pass/fail

Coding 46

Unit Testing…

 Testing a module f() has following steps
 Set the system state as needed

 Set value of parameters suitably

 Invoke the function f() with parms

 Compare result of f() with expected results

 Declare whether the test case succeeded
or failed

 Test frameworks automate all this

Coding 47

Unit testing of Classes

 Is same as before, except the system state is
generally the state of the object

 Many frameworks exist for OO – Junit is the
most popular; others for other languages also
exist

 Each testcase is a method, in which the
desired sequence of methods is executed;
assertions used to check the outcome

 The script will declare if all tests succeeded,
and if not which ones have failed

Coding 48

Unit Testing…

 There are frameworks like Junit that can be
used for testing Java classes

 Each test case is a method which ends with
some assertions

 If assertions hold, the test case pass,
otherwise it fails

 Complete execution and evaluation of the test
cases is automated

 For enhancing the test script, additional test
cases can be added easily

Coding 49

Code Inspections

 Code inspection is another technique that is
often used effectively at the unit level

 Main goal of inspection process is to detect
defects in work products

 First proposed by Fagan in 70s

 Earlier used for code, now used for all types
of work products

 Is recognized as an industry best practice

Coding 50

Code review…

 Conducted by group of programmers for
programmers (i.e. review done by peers)

 Is a structured process with defined roles
for the participants

 The focus is on identifying problems, not
resolving them

 Review data is recorded and used for
monitoring the effectiveness

Coding 51

A Review Process

Work Product for

review

Planning Preparation & Overview

Schedule,

Review Team,

Invitation

Group Review Meeting
Defects Log,

Recommendation

Rework & Follow Up
Reviewed Work

Product, Summary

Report

Coding 52

Planning

 Select the group review team – three to
five people group is best

 Identify the moderator – has the main
responsibility for the inspection

 Prepare package for distribution – work
product for review plus supporting docs

 Package should be complete for review

Coding 53

Overview and Self-Review

 A brief meeting – deliver package, explain
purpose of the review, intro,…

 All team members then individually review
the work product

 Lists the issues/problems they find in the self-
preparation log

 Checklists, guidelines are used

 Ideally, should be done in one sitting and
issues recorded in a log

Coding 54

Self-Review Log

Project name:

Work product name and ID:

Reviewer Name

Effort spent (hours)

Defect list

No Location Description Criticality

Coding 55

Group Review Meeting

 Purpose – define the final defect list

 Entry criteria – each member has done
a proper self-review (logs are reviewed)

 Group review meeting
 A reviewer goes over the product line by

line

 At any line, all issues are raised

 Discussion follows to identify if a defect

 Decision recorded (by the scribe)

Coding 56

Group Review Meeting…

 At the end of the meeting

 Scribe presents the list of defects/issues

 If few defects, the work product is
accepted; else it might be asked for
another review

 Group does not propose solutions – though
some suggestions may be recorded

 A summary of the inspections is prepared –
useful for evaluating effectiveness

Coding 57

Group Review Meeting…

 Moderator is in-charge of the meeting
and plays a central role
 Ensures that focus is on defect detection

and solutions are not discussed/proposed

 Work product is reviewed, not the author
of the work product

 Amicable/orderly execution of the meeting

 Uses summary report to analyze the overall
effectiveness of the review

Coding 58

Summary Report Example

Project

Work Product Type

Size of work product

Review team

Effort (person hours)

 Preparation

 Group meeting

Total

XXXX

Class AuctionItem

250 LOC of Java

P1, P2, P3

3 person-hrs (total)

4.5 person-hrs

7.5

Coding 59

Summary Report…

Defects

 No of major defects

 No of minor defects

Total

Review status

Reco for next phase

Comments

3

8

11

Accepted

Nil

Code can be improved

Coding 60

Summary Report…

 Defect density found – 3/0.25 = 12
major defects/KLOC
 Seems OK from experience

 Similarly for total and minor density

 Preparation rate – about 250/1 = 250
LOC / hr : Seems OK

 Group review rate: 250/1.5 = 180
LOC/hr; seems OK

Coding 61

Rework and Follow Up

 Defects in the defects list are fixed later
by the author

 Once fixed, author gets it OKed by the
moderator, or goes for another review

 Once all defects/issues are satisfactorily
addressed, review is completed and
collected data is submitted

Coding 62

Metrics

Coding 63

Metrics for Size

 LOC or KLOC

 non-commented, non blank lines is a
standard definition

 Generally only new or modified lines are
counted

 Used heavily, though has shortcomings

Coding 64

Metrics for Size…

 Halstead’s Volume
 n1: no of distinct operators

 n2: no of distinct operands

 N1: total occurrences of operators

 N2: Total occurrences of operands

 Vocabulary, n = n1 + n2

 Length, N = N1 + N2

 Volume, V = N log2(n)

Coding 65

Metrics for Complexity

 Cyclomatic Complexity is perhaps the most
widely used measure

 Represents the program by its control flow
graph with e edges, n nodes, and p parts

 Cyclomatic complexity is defined as V(G) = e-
n+p

 This is same as the number of linearly
independent cycles in the graph

 And is same as the number of decisions
(conditionals) in the program plus one

Coding 66

Cyclomatic complexity example…

1. {

2. i=1;

3. while (i<=n) {

4. J=1;

5. while(j <= i) {

6. If (A[i]<A[j])

7. Swap(A[i], A[j]);

8. J=j+1;}

9. i = i+1;}

10. }

Coding 67

Example…

Coding 68

Example…

 V(G) = 10-7+1 = 4

 Independent circuits
1. b c e b

2. b c d e b

3. a b f a

4. a g a

 No of decisions is 3 (while, while, if);
complexity is 3+1 = 4

Coding 69

Complexity metrics…

 Halsteads

 N2/n2 is avg times an operand is used

 If vars are changed frequently, this is
larger

 Ease of reading or writing is defined as
 D = (n1*N2)/(2*n2)

 There are others, e.g. live variables,
knot count..

Coding 70

Complexity metrics…

 The basic use of these is to reduce the
complexity of modules

 One suggestion is that cyclomatic
complexity should be less than 10

 Another use is to identify high
complexity modules and then see if
their logic can be simplified

Coding 71

Summary

 Goal of coding is to convert a design into
easy to read code with few bugs

 Good programming practices like structured
programming, information hiding, etc can
help

 There are many methods to verify the code
of a module – unit testing and inspections are
most commonly used

 Size and complexity measures are defined
and often used; common ones are LOC and
cyclomatic complexity

Testing 72

Software Testing

Testing 73

Testing Concepts

Testing 74

Background

 Main objectives of a project: High Quality &
High Productivity (Q&P)

 Quality has many dimensions
 reliability, maintainability, interoperability etc.

 Reliability is perhaps the most important
 Reliability: The chances of software failing
 More defects => more chances of failure =>

lesser reliability
 Hence Q goal: Have as few defects as

possible in the delivered software

Testing 75

Faults & Failure

 Failure: A software failure occurs if the
behavior of the s/w is different from
expected/specified.

 Fault: cause of software failure

 Fault = bug = defect

 Failure implies presence of defects

 A defect has the potential to cause failure.

 Definition of a defect is environment,
project specific

Testing 76

Role of Testing

 Reviews are human processes - can not catch all
defects

 Hence there will be requirement defects, design
defects and coding defects in code

 These defects have to be identified by testing

 Therefore testing plays a critical role in ensuring
quality.

 All defects remaining from before as well as new
ones introduced have to be identified by testing.

Testing 77

Detecting defects in Testing

 During testing, software under test
(SUT) executed with set of test cases

 Failure during testing => defects are
present

 No failure => confidence grows, but can
not say “defects are absent”

 To detect defects, must cause failures
during testing

Testing 78

Test Oracle

 To check if a failure has occurred when
executed with a test case, we need to
know the correct behavior

 I.e. need a test oracle, which is often a
human

 Human oracle makes each test case
expensive as someone has to check the
correctness of its output

Testing 79

Test case and test suite

 Test case – a set of test inputs and
execution conditions designed to
exercise SUT in a particular manner

 Test case should also specify the expected
output – oracle uses this to detect failure

 Test suite - group of related test cases
generally executed together

Testing 80

Test harness

 During testing, for each test case in a test
suite, conditions have to be set, SUT called
with inputs, output checked against expected
to declare fail/pass

 Many test frameworks (or test harness) exist
that automate the testing process
 Each test case is often a function/method
 A test case sets up the conditions, calls the SUT

with the required inputs
 Tests the results through assert statements
 If any assert fails – declares failure

Testing 81

Levels of Testing

 The code contains requirement defects,
design defects, and coding defects

 Nature of defects is different for
different injection stages

 One type of testing will be unable to
detect the different types of defects

 Different levels of testing are used to
uncover these defects

Testing 82

User needs Acceptance testing

Requirement

specification
System testing

Design

code

Integration testing

Unit testing

Testing 83

Unit Testing

 Different modules tested separately

 Focus: defects injected during coding

 Essentially a code verification technique,
covered in previous chapter

 UT is closely associated with coding

 Frequently the programmer does UT; coding
phase sometimes called “coding and unit
testing”

Testing 84

Integration Testing

 Focuses on interaction of modules in a
subsystem

 Unit tested modules combined to form
subsystems

 Test cases to “exercise” the interaction
of modules in different ways

 May be skipped if the system is not too
large

Testing 85

System Testing

 Entire software system is tested

 Focus: does the software implement the
requirements?

 Validation exercise for the system with
respect to the requirements

 Generally the final testing stage before the
software is delivered

 May be done by independent people

 Defects removed by developers

 Most time consuming test phase

Testing 86

Acceptance Testing

 Focus: Does the software satisfy user needs?

 Generally done by end users/customer in
customer environment, with real data

 Only after successful AT software is deployed

 Any defects found,are removed by developers

 Acceptance test plan is based on the
acceptance test criteria in the SRS

Testing 87

Other forms of testing

 Performance testing
 tools needed to “measure” performance

 Stress testing
 load the system to peak, load generation tools

needed

 Regression testing
 test that previous functionality works alright
 important when changes are made
 Previous test records are needed for comparisons
 Prioritization of testcases needed when complete

test suite cannot be executed for a change

Testing 88

Testing Process

Testing 89

Testing

 Testing only reveals the presence of defects

 Does not identify nature and location of defects

 Identifying & removing the defect => role of
debugging and rework

 Preparing test cases, performing testing,
defects identification & removal all consume
effort

 Overall testing becomes very expensive : 30-
50% development cost

Testing 90

Testing…

 Multiple levels of testing are done in a project

 At each level, for each SUT, test cases have
to be designed and then executed

 Overall, testing is very complex in a project
and has to be done well

 Testing process at a high level has: test
planning, test case design, and test execution

Testing 91

Test Plan

 Testing usually starts with test plan and ends
with acceptance testing

 Test plan is a general document that defines
the scope and approach for testing for the
whole project

 Inputs are SRS, project plan, design

 Test plan identifies what levels of testing will
be done, what units will be tested, etc in the
project

Testing 92

Test Plan…

 Test plan usually contains
 Test unit specs: what units need to be

tested separately

 Features to be tested: these may include
functionality, performance, usability,…

 Approach: criteria to be used, when to
stop, how to evaluate, etc

 Test deliverables

 Schedule and task allocation

Testing 93

Test case Design

 Test plan focuses on testing a project; does
not focus on details of testing a SUT

 Test case design has to be done separately
for each SUT

 Based on the plan (approach, features,..) test
cases are determined for a unit

 Expected outcome also needs to be specified
for each test case

Testing 94

Test case design…

 Together the set of test cases should detect
most of the defects

 Would like the set of test cases to detect any
defects, if it exists

 Would also like set of test cases to be small -
each test case consumes effort

 Determining a reasonable set of test case is
the most challenging task of testing

Testing 95

Test case design

 The effectiveness and cost of testing depends on the
set of test cases

 Q: How to determine if a set of test cases is good?
I.e. the set will detect most of the defects, and a
smaller set cannot catch these defects

 No easy way to determine goodness; usually the set
of test cases is reviewed by experts

 This requires test cases be specified before testing –
a key reason for having test case specs

 Test case specs are essentially a table

Testing 96

Test case specifications

 Seq.No Condition

to be tested
Test Data

Expected

 result
successful

Testing 97

Test case specifications…

 So for each testing, test case specs are
developed, reviewed, and executed

 Preparing test case specifications is
challenging and time consuming

 Test case criteria can be used

 Special cases and scenarios may be used

 Once specified, the execution and checking of
outputs may be automated through scripts

 Desired if repeated testing is needed

 Regularly done in large projects

Testing 98

Test case execution

 Executing test cases may require drivers or stubs to
be written; some tests can be auto, others manual
 A separate test procedure document may be prepared

 Test summary report is often an output – gives a
summary of test cases executed, effort, defects
found, etc

 Monitoring of testing effort is important to ensure
that sufficient time is spent

 Computer time also is an indicator of how testing is
proceeding

Testing 99

Defect logging and tracking

 A large software may have thousands of
defects, found by many different people

 Often person who fixes (usually the coder) is
different from who finds

 Due to large scope, reporting and fixing of
defects cannot be done informally

 Defects found are usually logged in a defect
tracking system and then tracked to closure

 Defect logging and tracking is one of the best
practices in industry

Testing 100

Defect logging…

 A defect in a software project has a life
cycle of its own, like
 Found by someone, sometime and logged

along with info about it (submitted)

 Job of fixing is assigned; person debugs
and then fixes (fixed)

 The manager or the submitter verifies that
the defect is indeed fixed (closed)

 More elaborate life cycles possible

Testing 101

Defect logging…

Testing 102

Defect logging…

 During the life cycle, info about defect
is logged at diff stages to help debug as
well as analysis

 Defects generally categorized into a few
types, and type of defects is recorded

 ODC is one classification

 Some std categories: Logic, standards, UI,
interface, performance, documentation,..

Testing 103

Defect logging…

 Severity of defects in terms of its
impact on sw is also recorded

 Severity useful for prioritization of fixing

 One categorization
 Critical: Show stopper

 Major: Has a large impact

 Minor: An isolated defect

 Cosmetic: No impact on functionality

Testing 104

Defect logging…

 Ideally, all defects should be closed

 Sometimes, organizations release software
with known defects (hopefully of lower
severity only)

 Organizations have standards for when a
product may be released

 Defect log may be used to track the trend of
how defect arrival and fixing is happening

Testing 105

Black Box Testing

Testing 106

Role of Test cases

 Ideally would like the following for test
cases

 No failure implies “no defects” or “high quality”
 If defects present, then some test case causes

a failure

 Role of test cases is clearly very critical

 Only if test cases are “good”, the
confidence increases after testing

Testing 107

Test case design

 During test planning, have to design a set of
test cases that will detect defects present

 Some criteria needed to guide test case
selection

 Two approaches to design test cases
 functional or black box

 structural or white box

 Both are complimentary; we discuss a few
approaches/criteria for both

Testing 108

Black Box testing

 Software tested to be treated as a block
box

 Specification for the black box is given

 The expected behavior of the system is
used to design test cases

 i.e test cases are determined solely from
specification.

 Internal structure of code not used for test
case design

Testing 109

Black box Testing…

 Premise: Expected behavior is specified.

 Hence just test for specified expected
behavior

 How it is implemented is not an issue.

 For modules,specification produced in
design specify expected behavior

 For system testing, SRS specifies
expected behavior

Testing 110

Black Box Testing…

 Most thorough functional testing - exhaustive
testing

 Software is designed to work for an input space

 Test the software with all elements in the input
space

 Infeasible - too high a cost

 Need better method for selecting test cases

 Different approaches have been proposed

Testing 111

Equivalence Class partitioning

 Divide the input space into equivalent classes

 If the software works for a test case from a
class the it is likely to work for all

 Can reduce the set of test cases if such
equivalent classes can be identified

 Getting ideal equivalent classes is impossible

 Approximate it by identifying classes for
which different behavior is specified

Testing 112

Equivalence class partitioning…

 Rationale: specification requires same
behavior for elements in a class

 Software likely to be constructed such
that it either fails for all or for none.

 E.g. if a function was not designed for
negative numbers then it will fail for all
the negative numbers

 For robustness, should form equivalent
classes for invalid inputs also

Testing 113

Equivalent class partitioning..

 Every condition specified as input is an
equivalent class

 Define invalid equivalent classes also

 E.g. range 0< value<Max specified

 one range is the valid class

 input < 0 is an invalid class

 input > max is an invalid class

 Whenever that entire range may not be
treated uniformly - split into classes

Testing 114

Equivalent class partitioning..

 Should consider eq. classes in outputs also
and then give test cases for different classes

 E.g.: Compute rate of interest given loan
amount, monthly installment, and number of
months

 Equivalent classes in output: + rate, rate = 0 ,-ve
rate

 Have test cases to get these outputs

Testing 115

Equivalence class…

 Once eq classes selected for each of the
inputs, test cases have to be selected

 Select each test case covering as many
valid eq classes as possible

 Or, have a test case that covers at most
one valid class for each input

 Plus a separate test case for each invalid
class

Testing 116

Example

 Consider a program that takes 2 inputs
– a string s and an integer n

 Program determines n most frequent
characters

 Tester believes that programmer may
deal with diff types of chars separately

 A set of valid and invalid equivalence
classes is given

Testing 117

Example..

Input Valid Eq Class Invalid Eq class

S 1: Contains numbers

2: Lower case letters

3: upper case letters

4: special chars

5: str len between 0-N(max)

1: non-ascii char

2: str len > N

N 6: Int in valid range 3: Int out of range

Testing 118

Example…

 Test cases (i.e. s , n) with first method

 s : str of len < N with lower case, upper case,
numbers, and special chars, and n=5

 Plus test cases for each of the invalid eq classes

 Total test cases: 1+3= 4

 With the second approach

 A separate str for each type of char (i.e. a str of
numbers, one of lower case, …) + invalid cases

 Total test cases will be 5 + 2 = 7

Testing 119

Boundary value analysis

 Programs often fail on special values

 These values often lie on boundary of
equivalence classes

 Test cases that have boundary values have
high yield

 These are also called extreme cases

 A BV test case is a set of input data that lies
on the edge of a eq class of input/output

Testing 120

BVA...

 For each equivalence class

 choose values on the edges of the class
 choose values just outside the edges

 E.g. if 0 <= x <= 1.0
 0.0 , 1.0 are edges inside
 -0.1,1.1 are just outside

 E.g. a bounded list - have a null list , a
maximum value list

 Consider outputs also and have test cases
generate outputs on the boundary

Testing 121

BVA…

 In BVA we determine the value of vars that
should be used

 If input is a defined range, then there are 6
boundary values plus 1 normal value (tot: 7)

 If multiple inputs, how to combine them into
test cases; two strategies possible
 Try all possible combination of BV of diff variables,

with n vars this will have 7n test cases!

 Select BV for one var; have other vars at normal
values + 1 of all normal values

Testing 122

BVA.. (test cases for two vars – x and y)

Testing 123

Pair-wise testing

 Often many parmeters determine the behavior of a
software system

 The parameters may be inputs or settings, and take
diff values (or diff value ranges)

 Many defects involve one condition (single-mode
fault), eg. sw not being able to print on some type of
printer
 Single mode faults can be detected by testing for different

values of diff parms

 If n parms and each can take m values, we can test for one
diff value for each parm in each test case

 Total test cases: m

Testing 124

Pair-wise testing…

 All faults are not single-mode and sw may fail
at some combinations
 Eg tel billing sw does not compute correct bill for

night time calling (one parm) to a particular
country (another parm)

 Eg ticketing system fails to book a biz class ticket
(a parm) for a child (a parm)

 Multi-modal faults can be revealed by testing
diff combination of parm values

 This is called combinatorial testing

Testing 125

Pair-wise testing…

 Full combinatorial testing not feasible
 For n parms each with m values, total

combinations are nm

 For 5 parms, 5 values each (tot: 3125), if one test
is 5 mts, tot time > 1 month!

 Research suggests that most such faults are
revealed by interaction of a pair of values

 I.e. most faults tend to be double-mode

 For double mode, we need to exercise each
pair – called pair-wise testing

Testing 126

Pair-wise testing…

 In pair-wise, all pairs of values have to
be exercised in testing

 If n parms with m values each, between
any 2 parms we have m*m pairs
 1st parm will have m*m with n-1 others

 2nd parm will have m*m pairs with n-2

 3rd parm will have m*m pairs with n-3, etc.

 Total no of pairs are m*m*n*(n-1)/2

Testing 127

Pair-wise testing…

 A test case consists of some setting of the n
parameters

 Smallest set of test cases when each pair is
covered once only

 A test case can cover a maximum of (n-
1)+(n-2)+…=n(n-1)/2 pairs

 In the best case when each pair is covered
exactly once, we will have m2 different test
cases providing the full pair-wise coverage

Testing 128

Pair-wise testing…

 Generating the smallest set of test cases that
will provide pair-wise coverage is non-trivial

 Efficient algos exist; efficiently generating
these test cases can reduce testing effort
considerably

 In an example with 13 parms each with 3 values
pair-wise coverage can be done with 15 testcases

 Pair-wise testing is a practical approach that
is widely used in industry

Testing 129

Pair-wise testing, Example

 A sw product for multiple platforms and uses
browser as the interface, and is to work with
diff OSs

 We have these parms and values
 OS (parm A): Windows, Solaris, Linux

 Mem size (B): 128M, 256M, 512M

 Browser (C): IE, Netscape, Mozilla

 Total no of pair wise combinations: 27

 No of cases can be less

Testing 130

Pair-wise testing…

Test case Pairs covered

a1, b1, c1

a1, b2, c2

a1, b3, c3

a2, b1, c2

a2, b2, c3

a2, b3, c1

a3, b1, c3

a3, b2, c1

a3, b3, c2

(a1,b1) (a1, c1) (b1,c1)

(a1,b2) (a1,c2) (b2,c2)

(a1,b3) (a1,c3) (b3,c3)

(a2,b1) (a2,c2) (b1,c2)

(a2,b2) (a2,c3) (b2,c3)

(a2,b3) (a2,c1) (b3,c1)

(a3,b1) (a3,c3) (b1,c3)

(a3,b2) (a3,c1) (b2,c1)

(a3,b3) (a3,c2) (b3,c2)

Testing 131

Special cases

 Programs often fail on special cases

 These depend on nature of inputs, types of
data structures,etc.

 No good rules to identify them

 One way is to guess when the software
might fail and create those test cases

 Also called error guessing

 Play the sadist & hit where it might hurt

Testing 132

Error Guessing

 Use experience and judgement to guess situations
where a programmer might make mistakes

 Special cases can arise due to assumptions about
inputs, user, operating environment, business, etc.

 E.g. A program to count frequency of words

 file empty, file non existent, file only has blanks, contains
only one word, all words are same, multiple consecutive
blank lines, multiple blanks between words, blanks at the
start, words in sorted order, blanks at end of file, etc.

 Perhaps the most widely used in practice

Testing 133

State-based Testing

 Some systems are state-less: for same inputs,
same behavior is exhibited

 Many systems’ behavior depends on the state
of the system i.e. for the same input the
behavior could be different

 I.e. behavior and output depend on the input
as well as the system state

 System state – represents the cumulative
impact of all past inputs

 State-based testing is for such systems

Testing 134

State-based Testing…

 A system can be modeled as a state machine

 The state space may be too large (is a cross
product of all domains of vars)

 The state space can be partitioned in a few
states, each representing a logical state of
interest of the system

 State model is generally built from such
states

Testing 135

State-based Testing…

 A state model has four components

 States: Logical states representing
cumulative impact of past inputs to system

 Transitions: How state changes in response
to some events

 Events: Inputs to the system

 Actions: The outputs for the events

Testing 136

State-based Testing…

 State model shows what transitions
occur and what actions are performed

 Often state model is built from the
specifications or requirements

 The key challenge is to identify states
from the specs/requirements which
capture the key properties but is small
enough for modeling

Testing 137

State-based Testing, example…

 Consider the student survey example
(discussed in Chap 4)

 A system to take survey of students

 Student submits survey and is returned
results of the survey so far

 The result may be from the cache (if the
database is down) and can be up to 5
surveys old

Testing 138

State-based Testing, example…

 In a series of requests, first 5 may be treated
differently

 Hence, we have two states: one for req no 1-
4 (state 1), and other for 5 (2)

 The db can be up or down, and it can go
down in any of the two states (3-4)

 Once db is down, the system may get into
failed state (5), from where it may recover

Testing 139

State-based Testing, example…

Testing 140

State-based Testing…

 State model can be created from the
specs or the design

 For objects, state models are often built
during the design process

 Test cases can be selected from the
state model and later used to test an
implementation

 Many criteria possible for test cases

Testing 141

State-based Testing criteria

 All transaction coverage (AT): test case set T
must ensure that every transition is exercised

 All transitions pair coverage (ATP). T must
execute all pairs of adjacent transitions
(incoming and outgoing transition in a state)

 Transition tree coverage (TT). T must
execute all simple paths (i.e. a path from
start to end or a state it has visited)

Testing 142

Example, test cases for AT criteria

SNo Transition Test case

1

2

3

4

5

6

7

8

1 -> 2

1 -> 2

2 -> 1

1 -> 3

3 -> 3

3 -> 4

4 -> 5

5 -> 2

Req()

Req(); req(); req(); req();req(); req()

Seq for 2; req()

Req(); fail()

Req(); fail(); req()

Req(); fail(); req(); req(); req();req(); req()

Seq for 6; req()

Seq for 6; req(); recover()

Testing 143

State-based testing…

 SB testing focuses on testing the states
and transitions to/from them

 Different system scenarios get tested;
some easy to overlook otherwise

 State model is often done after design
information is available

 Hence it is sometimes called grey box
testing (as it not pure black box)

Testing 144

White Box Testing

Testing 145

White box testing

 Black box testing focuses only on functionality

 What the program does; not how it is implemented

 White box testing focuses on implementation

 Aim is to exercise different program structures with
the intent of uncovering errors

 Is also called structural testing

 Various criteria exist for test case design

 Test cases have to be selected to satisfy
coverage criteria

Testing 146

Types of structural testing

 Control flow based criteria

 looks at the coverage of the control flow graph

 Data flow based testing

 looks at the coverage in the definition-use graph

 Mutation testing

 looks at various mutants of the program

 We will discuss only control flow based
criteria – these are most commonly used

Testing 147

Control flow based criteria

 Considers the program as control flow graph

 Nodes represent code blocks – i.e. set of
statements always executed together

 An edge (i,j) represents a possible transfer of
control from i to j

 Assume a start node and an end node

 A path is a sequence of nodes from start to
end

Testing 148

Statement Coverage Criterion

 Criterion: Each statement is executed at least once
during testing

 I.e. set of paths executed during testing should
include all nodes

 Limitation: does not require a decision to evaluate to
false if no else clause

 E.g. : abs (x) : if (x>=0) x = -x; return(x)

 The set of test cases {x = 0} achieves 100% statement
coverage, but error not detected

 Guaranteeing 100% coverage not always possible
due to possibility of unreachable nodes

Testing 149

Branch coverage

 Criterion: Each edge should be traversed at
least once during testing

 i.e. each decision must evaluate to both true
and false during testing

 Branch coverage implies stmt coverage

 If multiple conditions in a decision, then all
conditions need not be evaluated to T and F

Testing 150

Control flow based…

 There are other criteria too - path coverage,
predicate coverage, cyclomatic complexity
based, ...

 None is sufficient to detect all types of
defects (e.g. a program missing some paths
cannot be detected)

 They provide some quantitative handle on the
breadth of testing

 More used to evaluate the level of testing
rather than selecting test cases

Testing 151

Tool support and test case selection

 Two major issues for using these criteria

 How to determine the coverage

 How to select test cases to ensure coverage

 For determining coverage - tools are essential

 Tools also tell which branches and statements
are not executed

 Test case selection is mostly manual - test plan
is to be augmented based on coverage data

Testing 152

In a Project

 Both functional and structural should be used

 Test plans are usually determined using functional
methods; during testing, for further rounds, based on
the coverage, more test cases can be added

 Structural testing is useful at lower levels only; at
higher levels ensuring coverage is difficult

 Hence, a combination of functional and structural at
unit testing

 Functional testing (but monitoring of coverage) at
higher levels

Testing 153

Comparison

Code Review Structural

Testing

Functional

Testing
Computational M H M

Logic M H M

I/O H M H

Data handling H L H

Interface H H M

Data defn. M L M

Database H M M

Testing 154

Metrics

Testing 155

Data

 Defects found are generally logged

 The log forms the basic data source for
metrics and analysis during testing

 Main questions of interest for which metrics
can be used

 How good is the testing that has been done so
far?

 What is the quality or reliability of software after
testing is completed?

Testing 156

Coverage Analysis

 Coverage is very commonly used to evaluate
the thoroughness of testing

 This is not white box testing, but evaluating
the overall testing through coverage

 Organization sometimes have guidelines for
coverage, particularly at unit level (say 90%
before checking code in)

 Coverage of requirements also checked –
often by evaluating the test suites against
requirements

Testing 157

Reliability Estimation

 High reliability is an important goal to be achieved by
testing

 Reliability is usually quantified as a probability or a
failure rate or mean time to failure
 R(t) = P(X > t)
 MTTF = mean time to failure
 Failure rate

 For a system reliability can be measured by counting
failures over a period of time

 Measurement often not possible for software as due
to fixes reliability changes, and with one-off, not
possible to measure

Testing 158

Reliability Estimation…

 Sw reliability estimation models are used to
model the failure followed by fix model of
software

 Data about failures and their times during the
last stages of testing is used by these model

 These models then use this data and some
statistical techniques to predict the reliability
of the software

 Software reliability growth models are quite
complex and sophisticated

Testing 159

Reliability Estimation

 Simple method of measuring reliability
achieved during testing

 Failure rate, measured by no of failures in some
duration

 For using this for prediction, assumed that
during this testing software is used as it will
be by users

 Execution time is often used for failure rate, it
can be converted to calendar time

Testing 160

Defect removal efficiency

 Basic objective of testing is to identify
defects present in the programs

 Testing is good only if it succeeds in this goal

 Defect removal efficiency of a QC activity =
% of present defects detected by that QC
activity

 High DRE of a quality control activity means
most defects present at the time will be
removed

Testing 161

Defect removal efficiency …

 DRE for a project can be evaluated only when all
defects are know, including delivered defects

 Delivered defects are approximated as the number of
defects found in some duration after delivery

 The injection stage of a defect is the stage in which it
was introduced in the software, and detection stage
is when it was detected

 These stages are typically logged for defects

 With injection and detection stages of all defects,
DRE for a QC activity can be computed

Testing 162

Defect Removal Efficiency …

 DREs of different QC activities are a
process property - determined from
past data

 Past DRE can be used as expected
value for this project

 Process followed by the project must be
improved for better DRE

Testing 163

Summary

 Testing plays a critical role in removing
defects, and in generating confidence

 Testing should be such that it catches
most defects present, i.e. a high DRE

 Multiple levels of testing needed for this

 Incremental testing also helps

 At each testing, test cases should be
specified, reviewed, and then executed

Testing 164

Summary …

 Deciding test cases during planning is the
most important aspect of testing

 Two approaches – black box and white box

 Black box testing - test cases derived from
specifications.

 Equivalence class partitioning, boundary value,
cause effect graphing, error guessing

 White box - aim is to cover code structures

 statement coverage, branch coverage

Testing 165

Summary…

 In a project both used at lower levels
 Test cases initially driven by functional
 Coverage measured, test cases enhanced using

coverage data

 At higher levels, mostly functional testing
done; coverage monitored to evaluate the
quality of testing

 Defect data is logged, and defects are
tracked to closure

 The defect data can be used to estimate
reliability, DRE

