
Planning a Software

Project

UNIT-4

Project Planning 2

Agenda

Background

Effort estimation

Schedule and resource estimation

Quality Planning

Risk management

Project monitoring plans

Project Planning 3

Software Project

Goal: Build a software system to meet
commitments on cost, schedule, quality

Worldwide - many projects fail

one-third are runaways with cost or schedule

overrun of more than 125%

Project Planning 4

Project Failures

Major reasons for project runaways

unclear objectives

bad planning

no project management methodology

new technology

insufficient staff

All of these relate to project management

Effective project management is key to
successfully executing a project

Project Planning 5

Why improve PM?

Better predictability leading to
commitments that can be met

Lower cost through reduced rework,
better resource mgmt, better planning,..

Improved quality through proper quality
planning and control

Better control through change control,
CM, monitoring etc.

Project Planning 6

Why improve PM ….

Better visibility into project health and
state leading to timely intervention

Better handling of risks reducing the
chances of failure

All this leads to higher customer
satisfaction

And organization improvement

Project Planning 7

The Project Mgmt Process

Has three phases - planning, monitoring
and control, and closure

Planning is done before the much of the
engineering process (life cycle, LC) and
closure after the process

Monitoring phase is in parallel with LC

We focus on planning; monitoring covered
through its planning

Project Planning 8

Project Planning

Basic objective: To create a plan to meet
the commitments of the project, I.e.
create a path that, if followed, will lead to
a successful project

Planning involves defining the LC process
to be followed, estimates, detailed
schedule, plan for quality, etc.

Main output - a project management plan
and the project schedule

Project Planning 9

Key Planning Tasks

Estimate effort

Define project milestones and create a schedule

Define quality objectives and a quality plan

Identify risks and make plans to mitigate them

Define measurement plan, project-tracking

procedures, training plan, team organization, etc.

Effort Estimation

Project Planning 11

Effort Estimation

For a project total cost and duration has
to be committed in start

Requires effort estimation, often in terms
of person-months

Effort estimate is key to planning -
schedule, cost, resources depend on it

Many problems in project execution stem
from improper estimation

Project Planning 12

Estimation..

No easy way, no silver bullet

Estimation accuracy can improve with more
information about the project

Early estimates are more likely to be
inaccurate than later

More uncertainties in the start

With more info, estimation becomes easier

Project Planning 13

Estimation accuracy

Project Planning 14

Effort Estimation Models..

A model tries to determine the effort
estimate from some parameter values

A model also requires input about the
project, and cannot work in vacuum

So to apply a model, we should be able to
extract properties about the system

Two types of models - top-down and
bottom-up

Project Planning 15

Effort Estimation Models

Extract Estimation Model

Values of some
characteristics

Effort Estimate

Knowledge about
SW project

Project Planning 16

Top down estimation

First determines the total effort, then effort for
components

Simple approach – estimate effort from size and
productivity
Get the estimate of the total size of the software

Estimate project productivity using past data and project
characteristics

Obtain the overall effort estimate from productivity and
size estimates

Effort distribution data from similar project are
used to estimate effort for different phases

Project Planning 17

Top-down Estimation

A better method is to have effort estimate
as a function of size using:
 Effort = a * size b

E is in person-months, size in KLOC

Incorporates the observation that
productivity can dip with increased size

Constants a and b determined through
regression analysis of past project data

Project Planning 18

COCOMO Model

Uses size, but adjusts using some factors

Basic procedure

Obtain initial estimate using size

Determine a set of 15 multiplying factors
from different project attributes

Adjust the effort estimate by scaling it with
the final multiplying factor

Project Planning 19

COCOMO..

Initial estimate: a * size b ; some standard
values for a, b given for diff project types

There are 15 cost driver attributes like reliability,
complexity, application experience, capability, …

Each factor is rated, and for the rating a
multiplication factor is given

Final effort adjustment factor is the product of
the factors for all 15 attributes

Project Planning 20

COCOMO – Some cost drivers

Cost Driver Very
low

Low Nominal High Very
High

Required reliability

Database size

Product complexity

Execution time constraint

Memory constraint

Analyst capability

Application experience

Programmer capability

Use of software tools

Development schedule

.75

.7

1.46

1.29

1.42

1.24

1.23

.88

.94

.85

1.19

1.13

1.17

1.10

1.08

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.15

1.08

1.15

1.11

1.06

.86

.91

.86

.91

1.04

1.4

1.16

1.3

1.3

1.21

.71

.82

.70

.83

1.1

Project Planning 21

COCOMO – effort distribution

Effort distribution among different phases
is given as a percent of effort

Eg. For medium size product it is

Product design – 16%

Detailed design – 24%

Coding and UT – 38%

Integration and test – 22%

Project Planning 22

Bottom-up Estimation

An alternate approach to top-down

Effort for components and phases first
estimated, then the total

Can use activity based costing - all
activities enumerated and then each
activity estimated separately

Can group activities into classes - their
effort estimate from past data

Project Planning 23

An Estimation Procedure

Identify programs in the system and classify
them as simple, medium, or complex (S/M/C)

Define the average coding effort for S/M/C

Get the total coding effort.

Use the effort distribution in similar projects to
estimate effort for other tasks and total

Refine the estimates based on project specific
factors

Scheduling and Staffing

Project Planning 25

Project Schedule

A project Schedule is at two levels -
overall schedule and detailed schedule

Overall schedule comprises of major
milestones and final date

Detailed schedule is the assignment of
lowest level tasks to resources

Project Planning 26

Overall Schedule

Depends heavily on the effort estimate

For an effort estimate, some flexibility
exists depending on resources assigned

Eg a 56 person-months project can be
done in 8 months with 7 people, or 7
months with 8 people

Stretching a schedule is easy;
compressing is hard and expensive

Project Planning 27

Overall Scheduling...

One method is to estimate schedule S (in
months) as a function of effort in PMs

Can determine the fn through analysis of
past data; the function is non linear

COCOMO: S = 2.5 E 3.8

Often this schedule is checked and
corrected for the specific project

One checking method – square root check

Project Planning 28

Determining Overall

Schedule from past data

Effort in person-days

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400 1600 1800

S
c
h

e
d

u
le

 (
D

a
y
s)

Project Planning 29

Determining Milestones

With effort and overall schedule decided,
avg project resources are fixed

Manpower ramp-up in a project decides
the milestones

Manpower ramp-up in a project follows a
Rayleigh curve - like a normal curve

In reality manpower build-up is a step
function

Project Planning 30

Manpower Ramp-up

Design Build Test

PTS

Project Planning 31

Milestones ...

With manpower ramp-up and effort distribution,
milestones can be decided

Effort distribution and schedule distribution in
phases are different

Generally, the build has larger effort but not
correspondingly large schedule

COCOMO specifies distr of overall sched. Design
– 19%, programming – 62%, integration – 18%

Project Planning 32

An Example Schedule

Task Dur.
(days)

Work (p-

days)

Start
Date

End
Date

Project Init tasks 33 24 5/4 6/23

Training 95 49 5/8 9/29

Knowledge sharing 78 20 6/2 9/30

Elaboration iteration I 55 55 5/15 6/23

Construction iteration I 9 35 7/10 7/21

Project Planning 33

Detailed Scheduling

To reach a milestone, many tasks have to
be performed

Lowest level tasks - those that can be done
by a person (in less than 2-3 days)

Scheduling - decide the tasks, assign them
while preserving high-level schedule

Is an iterative task - if cannot “fit” all tasks,
must revisit high level schedule

Project Planning 34

Detailed Scheduling

Detailed schedule not done completely in
the start - it evolves

Can use Microsoft Project for keeping it

Detailed Schedule is the most live
document for managing the project

Any activity to be done must get reflected
in the detailed schedule

Project Planning 35

An example task in detail

schedule

Module Act Code Task Duration Effort

History PUT Unit test #
17

1 day 7 hrs

St. date End date %comp Depend. Resource

7/18 7/18 0% Nil SB

Project Planning 36

Detail schedule

Each task has name, date, duration,
resource etc assigned

% done is for tracking (tools use it)

The detailed schedule has to be
consistent with milestones

Tasks are sub-activities of milestone level
activities, so effort should add up, total
schedule should be preserved

Quality Planning

Project Planning 38

Quality Planning

Delivering high quality is a basic goal

Quality can be defined in many ways

Current industry standard - delivered
defect density (e.g. #defects/KLOC)

Defect - something that causes software
to behave in an inconsistent manner

Aim of a project - deliver software with
low delivered defect density

Project Planning 39

Defect Injection and

Removal

Software development is labor intensive

Defects are injected at any stage

As quality goal is low delivered defect
density, these defects have to be removed

Done primarily by quality control (QC)
activities of reviews and testing

Project Planning 40

Defect Injection and

Removal

Req.
Analysis

Design R Coding R UT IT/ST AT

Development
Process

Defect Injection

R

Defect Removal

Project Planning 41

Approaches to Quality

Management

Ad hoc - some testing, some reviews
done as and when needed

Procedural - defined procedures are
followed in a project

Quantitative - defect data analysis done
to manage the quality process

Project Planning 42

Procedural Approach

A quality plan defines what QC tasks will
be undertaken and when

Main QC tasks - reviews and testing

Guidelines and procedures for reviews
and testing are provided

During project execution, adherence to
the plan and procedures ensured

Project Planning 43

Quantitative Approach

Goes beyond asking “has the procedure
been executed”

Analyzes defect data to make judgements
about quality

Past data is very important

Key parameters - defect injection and
removal rates, defect removal efficiency
(DRE)

Project Planning 44

Quality Plan

The quality plan drives the quality
activities in the project

Level of plan depends on models available

Must define QC tasks that have to be
performed in the project

Can specify defect levels for each QC
tasks (if models and data available)

Risk Management

Project Planning 46

Risk Management

Any project can fail - reasons can be
technical, managerial, etc.

Project management aims to tackle the
project management aspect

Engineering life cycles aim to tackle the
engineering issues

A project may fail due to unforeseen events
- risk management aims to tackle this

Project Planning 47

Risk Management

Risk: any condition or event whose
occurrence is not certain but which can
cause the project to fail

Aim of risk management: minimize the
effect of risks on a project

Risk management has two basic aspects
Risk assessment

Risk control

Project Planning 48

Risk Assessment

To identify possible risks to a project, i.e.
to those events that might occur and
which might cause the project to fail

No “algorithm” possible, done by “what
ifs”, checklists, past experience

Can have a list of “top 10” risks that
projects have seen in past

Project Planning 49

Top Risk Examples

Shortage of technically trained manpower

Too many requirement changes

Unclear requirements

Not meeting performance requirements

Unrealistic schedules

Insufficient business knowledge

Working on new technology

Project Planning 50

Risk Prioritization

The number of risks might be large

Must prioritize them to focus attention on
the “high risk” areas

For prioritization, impact of each risk must
be understood

In addition, probability of the risk
occurring should also be understood

Project Planning 51

Risk Prioritization ...

Risk exposure (RE) = probability of risk
occurring * risk impact

RE is the expected value of loss for a risk

Prioritization can be done based on risk
exposure value

Plans can be made to handle high RE risks

Project Planning 52

A Simple approach to Risk

Prioritization

Classify risk occurrence probabilities as:
Low, Medium, High

Classify risk impact as: Low, Medium, High

Identify those that are HH, or HM/MH

Focus on these for risk mitigation

Will work for most small and medium sized
projects

Project Planning 53

Risk Control

Can the risk be avoided?

E.g. if new hardware is a risk, it can be
avoided by working with proven hardware

For others, risk mitigation steps need to
be planned and executed

Actions taken in the project such that if the
risk materializes, its impact is minimal

Involves extra cost

Project Planning 54

Risk Mitigation Examples

Too many requirement changes

Convince client that changes in requirements
will have an impact on the schedule

Define a procedure for requirement changes

Maintain cumulative impact of changes and
make it visible to client

Negotiate payment on actual effort.

Project Planning 55

Examples ...

Manpower attrition

Ensure that multiple resources are assigned
on key project areas

Have team building sessions

Rotate jobs among team members

Keep backup resources in the project

Maintain documentation of individual’s work

Follow the CM process and guidelines strictly

Project Planning 56

Examples ...

Unrealistic schedules

Negotiate for better schedule

Identify parallel tasks

Have resources ready early

Identify areas that can be automated

If the critical path is not within the schedule,
negotiate with the client

Negotiate payment on actual effort

Project Planning 57

Risk Mitigation Plan

Risk mitigation involves steps that are to
be performed (hence has extra cost)

It is not a paper plan - these steps should
be scheduled and executed

These are different from the steps one
would take if the risk materializes - they
are performed only if needed

Risks must be revisited periodically

Project Planning 58

A Practical Risk Mgmt

Approach

 Based on methods of some orgs

1. List risks; for each risk rate probability as
Low, Medium, High

2. For each risk assess impact on the project
as Low, medium, High

3. Rank the risks based on probability and
impact – HH is the highest

4. Select top few items for mitigation

Project Planning 59

A risk mgmt plan

Risk Prob Impact Exposure

1. Failure to meet perf
reqs

High High High

2. Lack of people with
right skills

Med Med Med

3. Complexity of the
application

Med Med Med

4. Unclear
requirements

Med Med Med

Project Planning 60

Risk Mgmt plan…
Risk Mitigation plan

1. Failure to
meet perf reqs

Train team in perf engg

Have perf testing scripts

Use suitable tools

2. Lack of people
with right skills

Train resources

Develop suitable standards

3. Complexity of
the application

Ensure ongoing k transfer

Use people with domain exp

4. Unclear
requirements

Have multiple reviews

Build prototype

Project Monitoring Plans

Project Planning 62

Background

A plan is a mere document that can guide

It must be executed

To ensure execution goes as per plan, it
must be monitored and controlled

Monitoring requires measurements

And methods for interpreting them

Monitoring plan has to plan for all the
tasks related to monitoring

Project Planning 63

Measurements

Must plan for measurements in a project

Without planning, measurements will not be
done

Main measurements – effort, size, schedule, and
defects
Effort – as this is the main resource; often tracked

through effort reporting tools

Defects – as they determine quality; often defect
logging and tracking systems used

During planning – what will be measured, how,
tool support, and data management

Project Planning 64

Project Tracking

Goal: To get visibility in project execution
so corrective actions can be taken when
needed to ensure project succeeds

Diff types of monitoring done at projects;
measurements provide data for it

Project Planning 65

Tracking…

Activity-level monitoring

Each activity in detailed schd is getting done

Often done daily by managers

A task done marked 100%; tools can determine
status of higher level tasks

Status reports

Generally done weekly to take stock

Summary of activities completed, pending

Issues to be resolved

Project Planning 66

Tracking…

Milestone analysis
A bigger review at milestones

Actual vs estimated for effort and sched is
done

Risks are revisited

Changes to product and their impact may be
analyzed

Cost-schedule milestone graph is another
way of doing this

Project Planning 67

Project Management Plan

The project management plan (PMP)
contains outcome of all planning activities -
focuses on overall project management

Besides PMP, a project schedule is needed

Reflects what activities get done in the project

Microsoft project (MSP) can be used for this

Based on project planning; is essential for day-
to-day management

Does not replace PMP !

Project Planning 68

PMP Structure - Example

Project overview - customer, start and
end date, overall effort, overall value,
main contact persons, project milestones,
development environment..

Project planning - process and tailoring,
requirements change mgmt, effort
estimation, quality goals and plan, risk
management plan, ..

Project Planning 69

PMP Example ...

Project tracking - data collection, analysis
frequency, escalation procedures, status
reporting, customer complaints, …

Project team, its organization, roles and
responsibility, …

Project Planning 70

Project Planning -

Summary

Project planning forms the foundation of
project management

Key aspects: effort and schedule estimation,
quality planning, risk mgmt., …

Outputs of all can be documented in a PMP,
which carries all relevant info about project

Besides PMP, a detailed project schedule
maintains tasks to be done in the project

Design

Software Design

 Design activity begins with a set of requirements, and
maybe an architecture

 Design done before the system is implemented

 Design focuses on module view – i.e. what modules
should be in the system

 Module view may have easy or complex relationship
with the C&C view

 Design of a system is a blue print for implementation

 Often has two levels – high level (modules are defined),
and detailed design (logic specified)

Design…

 Design is a creative activity

 Goal: to create a plan to satisfy requirements

 Perhaps the most critical activity during system
development

 Design determines the major characteristics of a system

 Has great impact on testing and maintenance

 Design document forms reference for later phases

 Design methodology – systematic approach for creating
a design

Design Concepts

Design is correct, if it will satisfy all the
requirements and is consistent with
architecture

Of the correct designs, we want best
design

We focus on modularity as the main
criteria (besides correctness)

Modularity

 Modular system – in which modules can be built
separately and changes in one have minimum
impact on others

 Modularity supports independence of models
 Modularity enhances design clarity, eases

implementation
 Reduces cost of testing, debugging and

maintenance
 Cannot simply chop a program into modules to get

modularly
 Need some criteria for decomposition – coupling

and cohesion are such criteria

Coupling

 Independent modules: if one can function
completely without the presence of other

 Independence between modules is desirable
Modules can be modified separately

Can be implemented and tested separately

Programming cost decreases

 In a system all modules cannot be independent

 Modules must cooperate with each other

 More connections between modules
More dependent they are

 More knowledge about one module is required to
understand the other module.

 Coupling captures the notion of dependence

Coupling…

Coupling between modules is the strength of
interconnections between modules

In general, the more we must know about
module A in order to understand module B the
more closely connected is A to B

"Highly coupled" modules are joined by strong
interconnection

"Loosely coupled" modules have weak
interconnections

Coupling…

Goal: modules as loosely coupled as possible

Where possible, have independent modules

Coupling is decided during high level design

Cannot be reduced during implementation

Coupling is inter-module concept

Major factors influencing coupling
 Type of connection between modules

Complexity of the interface

Type of information flow between modules

Coupling – Type of

connection

 Complexity and obscurity of interfaces increase coupling

 Minimize the number of interfaces per module

 Minimize the complexity of each interface

 Coupling is minimized if
Only defined entry of a module is used by others

 Information is passed exclusively through parameters

 Coupling increases if
Indirect and obscure interface are used

 Internals of a module are directly used

Shared variables employed for communication

Coupling – interface

complexity

Coupling increases with complexity of interfaces
eg. number and complexity of parms

Interfaces are needed to support required
communication

Often more than needed is used eg. passing
entire record when only a field is needed

Keep the interface of a module as simple as
possible

Coupling – Type of Info

flow

Coupling depends on type of information flow
Two kinds of information: data or control.
Transfer of control information

 Action of module depends on the information
 Makes modules more difficult to understand

Transfer of data information
Module can be treated as input-output function

Lowest coupling: interfaces with only data
communication

 Highest: hybrid interfaces

Coupling - Summary

Coupling Interface Type of Type of
 complexity connections commu-
 nication

Low Simple to module data
 obvious by name

High complicated to internal Hybrid
 obscure elements

Coupling in OO Systems

In OO systems, basic modules are classes,
which are richer than fns

OO Systems have three types of coupling

Interaction coupling

Component coupling

Inheritance coupling

Coupling in OO -

Interaction

Interaction coupling occurs due to
methods of a class invoking methods of
other classes
Like calling of functions

Worst form if methods directly access
internal parts of other methods

Still bad if methods directly manipulate
variables of other classes

Passing info through tmp vars is also bad

Coupling in OO …

Least interaction coupling if methods
communicate directly with parameters

With least number of parameters

With least amount of info being passed

With only data being passed

I.e. methods should pass the least
amount of data, with least no of parms

Coupling in OO -

Component

Component coupling – when a class A has
variables of another class C
A has instance vars of C

A has some parms of type C

A has a method with a local var of type C

When A is coupled with C, it is coupled with all
subclasses of C as well

Component coupling will generally imply the
presence of interaction coupling also

Coupling in OO -

Inheritance

Inheritance coupling – two classes are coupled if
one is a subclass of other

Worst form – when subclass modifies a
signature of a method or deletes a method

Coupling is bad even when same signature but
a changed implementation

Least, when subclass only adds instance vars
and methods but does not modify any

Cohesion

 Coupling characterized the inter-module bond

 Reduced by minimizing relationship between elts of
different modules

 Another method of achieving this is by maximizing
relationship between elts of same module

 Cohesion considers this relationship

 Interested in determining how closely the elements
of a module are related to each other

 In practice both are used

Cohesion…

Cohesion of a module represents how tightly
bound are the elements of the module

Gives a handle about whether the different
elements of a module belong together

High cohesion is the goal

Cohesion and coupling are interrelated

Greater cohesion of modules, lower coupling
between module

Correlation is not perfect.

Levels of Cohesion

 There are many levels of cohesion.

Coincidental

Logical

Temporal

Communicational

Sequential

Functional

 Coincidental is lowest, functional is highest

 Scale is not linear

 Functional is considered very strong

Determining Cohesion

 Describe the purpose of a module in a sentence

 Perform the following tests

1. If the sentence has to be a compound sentence, contains
more than one verbs, the module is probably performing
more than one function. Probably has sequential or
communicational cohesion.

2. If the sentence contains words relating to time, like "first",
"next", "after", "start" etc., the module probably has
sequential or temporal cohesion.

3. If the predicate of the sentence does not contain a

single specific object following the verb, the module
is probably logically cohesive. Eg "edit all data", while
"edit source data" may have functional cohesion.

4. Words like "initialize", "clean-up" often imply
temporal cohesion.

 Functionally cohesive module can always be
described by a simple statement

Cohesion in OO Systems

In OO, different types of cohesion is possible as
classes are the modules
Method cohesion
Class cohesion
Inheritance cohesion

Method cohesion – why diff code elts are
together in a method
Like cohesion in functional modules; highest form is

if each method implements a clearly defined function
with all elts contributing to implementing this
function

Cohesion in OO…

Class cohesion – why diff attributes and
methods are together in a class
A class should represent a single concept

with all elts contributing towards it

Whenever multiple concepts encapsulated,
cohesion is not as high

A symptom of multiple concepts – diff gps of
methods accessing diff subsets of attributes

Cohesion in OO…

Inheritance cohesion – focuses on why
classes are together in a hierarchy

Two reasons for subclassing – generalization-
specialization and reuse

Cohesion is higher if the hierarchy is for
providing generalization-specialization

Open-closed Principle

 Besides cohesion and coupling, open closed principle
also helps in achieving modularity

 Principle: A module should be open for extension but
closed for modification
Behavior can be extended to accommodate new requirements,

but existing code is not modified

I.e. allows addition of code, but not modification of existing
code

Minimizes risk of having existing functionality stop working due
to changes – a very important consideration while changing
code

Good for programmers as they like writing new code

Open-closed Principle…

In OO this principle is satisfied by using
inheritance and polymorphism

Inheritance allows creating a new class to
extend behavior without changing the original
class

This can be used to support the open-closed
principle

Consider example of a client object which
interacts with a printer object for printing

Example

Example..

Client directly calls methods on Printer1

If another printer is to be allowed

A new class Printer2 will be created

But the client will have to be changed if it wants to
use Printer 2

Alternative approach

Have Printer1 a subclass of a general Printer

For modification, add another subclass Printer 2

Client does not need to be changed

Example…

Liskov’s Substitution
Principle

Principle: Program using object o1 of base
class C should remain unchanged if o1 is
replaced by an object of a subclass of C

If hierarchies follow this principle, the
open-closed principle gets supported

Summary

Goal of designing is to find the best
possible correct design

Modularity is the criteria for deciding
quality of the design

Modularity enhanced by low coupling,
high cohesion, and following open-
closed principle

Function Oriented Design

and Structured Design

Methodology

Program Structure and Structure

Charts

 Every program has a structure

 Structure Chart - graphic representation of structure

 SC represents modules and interconnections

 Each module is represented by a box

 If A invokes B, an arrow is drawn from A to B

 Arrows are labeled by data items

 Different types of modules in a SC

 Input, output, transform and coordinate modules

 A module may be a composite

Structure charts…

SC shows the static structure, not the logic

Different from flow charts

Major decisions and loops can be shown

Structure is decided during design

Implementation does not change structure

Structure effects maintainability

SDM aims to control the structure

SC of a Sort Program

Diff types of modules

Iteration and decision

STRUCTURED DESIGN

METHODOLOGY

 SDM views software as a transformation function that
converts given inputs to desired outputs

 The focus of SD is the transformation function

 Uses functional abstraction

 Goal of SDM: Specify functional modules and
connections

 Low coupling and high cohesion is the objective

Transformation

functions Input Output

Steps in SD

1. Draw a DFD of the system

2. Identify most abstract inputs and most
abstract outputs

3. First level factoring

4. Factoring of input, output, transform
modules

5. Improving the structure

1. Data Flow Diagrams

SD starts with a DFD to capture flow of data
in the proposed system

DFD is an important representation; provides
a high level view of the system

Emphasizes the flow of data through the
system

Ignores procedural aspects
(Purpose here is different from DFDs used in

requirements analysis, thought notation is the
same)

Drawing a DFG

 Start with identifying the inputs and outputs
 Work your way from inputs to outputs, or vice versa

If stuck, reverse direction
Ask: "What transformations will convert the inputs to

outputs"
 Never try to show control logic.

If thinking about loops, if-then-else, start again
 Label each arrow carefully
 Make use of * and +, and show sufficient detail
 Ignore minor functions in the start
 For complex systems, make dfg hierarchical
 Never settle for the 1st dfg

Step 2 of SD Methodology

Generally a system performs a basic function
 Often cannot be performed on inputs directly
 First inputs must be converted into a suitable

form
 Similarly for outputs - the outputs produced
 by main transforms need further processing
 Many transforms needed for processing inputs

and outputs
Goal of step 2 is to separate such transforms

from the basic transform centers

Step 2…

Most abstract inputs: data elements in dfg that
are furthest from the actual inputs, but can still
be considered as incoming

These are logical data items for the
transformation

May have little similarity with actual inputs.

Often data items obtained after error checking,
formatting, data validation, conversion etc.

Step 2…

 Travel from physical inputs towards outputs until data
can no longer be considered incoming

 Go as far as possible, without loosing the incoming
nature

 Similarly for most abstract outputs
 Represents a value judgment, but choice is often

obvious
 Bubbles between mai and mao: central transforms
 These transforms perform the basic transformation
 With mai and mao the central transforms can

concentrate on the transformation

Step 2…

Problem View: Each system does some i/o and
some processing

In many systems the i/o processing forms the
large part of the code

This approach separates the different functions
subsystem primarily performing input

subsystem primarily performing transformations

subsystem primarily performing output presentation

Example 1 – counting the

no of different words in a

file

Example 2 – ATM

3. First Level Factoring

 First step towards a structure chart

 Specify a main module

 For each most abstract input data item, specify a
subordinate input module

 The purpose of these input modules is to deliver to
main the mai data items

 For each most abstract output data element, specify
an output module

 For each central transform, specify a subordinate
transform module

 Inputs and outputs of these transform modules are
specified in the DFD

 First level factoring is straight forward

 Main module is a coordinate module

 Some subordinates are responsible for delivering the
logical inputs

 These are passed to transform modules to get them
converted to logical outputs

 Output modules then consume them

 Divided the problem into three separate problems

 Each of the three diff. types of modules can be
designed separately

 These modules are independent

Example 1

Example 2

4. Factoring Input modules

 The transform that produced the mai data is treated
as the central transform

 Then repeat the process of first level factoring

 Input module being factored becomes the main
module

 A subordinate input module is created for each data
item coming in this new central transform

 A subordinate module is created for the new central
transform

 Generally there will be no output modules

 The new input modules are factored similarly Till the
physical inputs are reached

 Factoring of the output modules is symmetrical

 Subordinates - a transform and output modules

 Usually no input modules

Example 1

Factoring Central

Transforms

 Factoring i/o modules is straight forward if the DFD is
detailed

 No rules for factoring the transform modules

 Top-down refinement process can be used

 Goal: determine sub-transforms that will together
compose the transform

 Then repeat the process for newly found transforms

 Treat the transform as a problem in its own right

 Draw a data flow graph

 Then repeat the process of factoring

 Repeat this till atomic modules are reached

Example 1

5. Improving Design

through Heuristics

 The above steps should not be followed blindly
 The structure obtained should be modified if needed
 Low coupling, high cohesion being the goal
 Design heuristics used to modify the initial design
 Design heuristics - A set of thumb rules that are

generally useful
 Module Size: Indication of module complexity

Carefully examine modules less than a few lines or
greater than about 100 lines

 Fan out and fan in
 A high fan out is not desired, should not be increased

beyond 5 or 6
 Fan in should be maximized

 Scope of effect of a module: the modules affected by
a decision inside the module

 Scope of control: All subordinates of the module

 Good thumb rule:

 For each module scope of effect should be a subset
of scope of control

 Ideally a decision should only effect immediate
subordinates

 Moving up the decision, moving the module down
can be utilized to achieve this

Summary

 Structured design methodology is one way to create
modular design

 It partitions the system into input subsystems, output
subsystems & transform subsystems

 Idea: Many systems use a lot of code for handling
inputs & outputs

 SDM separates these concerns

 Then each of the subsystems is factored using the
DFD

 The design is finally documented & verified before
proceeding

Object Oriented Design

and UML

OO Concepts

OO Concepts

Information hiding – use encapsulation to
restrict external visibility

OO encapsulates the data, provides
limited access, visibility

Info hiding can be provided without OO –
is an old concept

OO Concepts…

State retention – fns, procedures do not
retain state; an object is aware of its past
and maintains state

Identity – each object can be identified
and treated as a distinct entity

Behavior – state and services together
define the behavior of an object, or how
an object responds

OO Concepts..

Messages – through which a sender obj
conveys to a target obj a request

For requesting O1 must have – a handle
for O2, name of the op, info on ops that
O2 requires

General format O2.method(args)

OO Concepts..

Classes – a class is a stencil from which objects
are created; defines the structure and services.
A class has
An interface which defines which parts of an object

can be accessed from outside

Body that implements the operations

Instance variables to hold object state

Objects and classes are different; class is a
type, object is an instance

State and identity is of objects

Relationship among

objects

 An object has some capability – for other
services it interacts with other objects

 Some different ways for interaction:
1. Supplier object is global to client
2. Supplier obj is a parm to some op of the client
3. Supplier obj is part of the client obj
4. Supplier obj is locally declared in some op

 Relationship can be either aggregation (whole-
part relationship), or just client server
relationship

Inheritance

Inheritance is unique to OO and not there in
function-oriented languages/models

Inheritance by class B from class A is the facility
by which B implicitly gets the attributes and ops
of A as part of itself

Attributes and methods of A are reused by B

When B inherits from A, B is the subclass or
derived class and A is the base class or
superclass

Inheritance..

A subclass B generally has a derived part
(inherited from A) and an incremental
part (is new)

Hence, B needs to define only the
incremental part

Creates an “is-a” relationship – objects of
type B are also objects of type A

Inheritance…

Inheritance…

The inheritance relationship between classes
forms a class hierarchy

In models, hierarchy should represent the
natural relationships present in the problem
domain

In a hierarchy, all the common features can be
accumulated in a superclass

An existing class can be a specialization of an
existing general class – is also called
generalization-specialization relationships

Inheritance…

Strict inheritance – a subclass takes all
features of parent class

Only adds features to specialize it

Non-strict: when some of the features
have been redefined

Strict inheritance supports “is-a” cleanly
and has fewer side effects

Inheritance…

Single inheritance – a subclass inherits
from only one superclass

Class hierarchy is a tree

Multiple inheritance – a class inherits from
more than one class

Can cause runtime conflicts

Repeated inheritance - a class inherits from a
class but from two separate paths

Inheritance and

Polymorphism

Inheritance brings polymorphism, i.e. an object
can be of different types

An object of type B is also an object of type A

Hence an object has a static type and a dynamic
type

Implications on type checking

Also brings dynamic binding of operations which
allows writing of general code where operations do
different things depending on the type

Unified Modeling Language

(UML) and Modeling

UML is a graphical notation useful for OO
analysis and design

Allows representing various aspects of the
system

Various notations are used to build
different models for the system

OOAD methodologies use UML to
represent the models they create

Modeling

Modeling is used in many disciplines –
architecture, aircraft building, …

A model is a simplification of reality

“All models are wrong, some are useful”
A good model includes those elts that

have broad effect and omits minor elts

A model of a system is not the system!

Why build models?

Models help us visualize a system

Help specify the system structure

Gives us a template that can guide the
construction

Document the decisions taken and their
rationale

Modeling

Every complex system requires multiple
models, representing diff aspects

These models are related but can be
studied in isolation

Eg. Arch view, electrical view, plumbing
view of a building

Model can be structural, or behavioral

Views in an UML

A use case view

A design view

A process view

Implementation view

Deployment view

We will focus primarily on models for design –
class diagram, interaction diagram, etc.

Class Diagrams

Classes are the basic building blocks of an
OO system as classes are the
implementation units also

Class diagram is the central piece in an
OO design. It specifies
Classes in the system

Association between classes

Subtype, supertype relationship

Class Diagram…

Class itself represented as a box with
name, attributes, and methods

There are conventions for naming

If a class is an interface, this can be
specified by <<interface>> stereotype

Properties of attr/methods can be
specified by tags between { }

Class – example

Generalization-

Specialization

This relationship leads to class hierarchy

Can be captured in a class diagram

Arrows coming from the subclass to the
superclass with head touching super

Allows multiple subclasses

If specialization is done on the basis of some
discriminator, arrow can be labeled

Example – class hierarchy

Association/aggregation

Classes have other relationships

Association: when objects of a class need
services from other objects
Shown by a line joining classes

Multiplicity can be represented

Aggregation: when an object is composed of
other objects
Captures part-whole relationship

Shown with a diamond connecting classes

Example –

association/aggregation

Interaction Diagrams

Class diagram represent static structure of the
system (classes and their rel)

Do not model the behavior of system
Behavioral view – shows how objects interact

for performing actions (typically a use case)
Interaction is between objects, not classes
Interaction diagram in two styles

Collaboration diagram
Sequence diagram

Two are equivalent in power

Sequence Diagram

Objects participating in an interaction are shown
at the top

For each object a vertical bar represents its
lifeline

Message from an object to another, represented
as a labeled arrow

If message sent under some condition, it can be
specified in bracket

Time increases downwards, ordering of events
is captured

Example – sequence diag.

Collaboration diagram

Also shows how objects interact

Instead of timeline, this diagram looks
more like a state diagram

Ordering of messages captured by
numbering them

Is equivalent to sequence diagram in
modeling power

Example – collaboration

diag

Other Diagrams

Class diagram and interaction diagrams
most commonly used during design

There are other diagrams used to build
different types of models

Other Diagrams

Instead of objects/classes, can represent
components, packages, subsystems

These are useful for developing architecture
structures

UML is extensible – can model a new but similar
concept by using stereotypes (by adding
<<name>>)

Tagged values can be used to specify additional
properties, e.g. private, readonly..

Notes can be added

Other symbols

Design using UML

Many OOAD methodologies have been proposed

They provide some guidelines on the steps to be
performed

Basic goal is to identify classes, understand their
behavior, and relationships

Different UML models are used for this

Often UML is used, methodologies are not
followed strictly

Design using UML

Basic steps
Identify classes, attributes, and operations from use

cases
Define relationships between classes
Make dynamic models for key use cases and use

them to refine class diagrams
Make a functional model and use it to refine the

classes
Optimize and package

Class diagrams play the central role; class defn
gets refined as we proceed

Restaurant example: Initial

classes

Restaurant example: a seq

diag

Detailed Design

 HLD does not specify module logic; this is done during
detailed design

 One way to communicate the logic design: use natural
language

 Is imprecise and can lead to misunderstanding

 Other extreme is to use a formal language

 Generally a semi-formal language is used – has formal
outer structures but informal inside

Logic/Algorithm Design

Once the functional module (function or
methods in a class) are specified, the algo
to implement it is designed

Various techniques possible for designing
algorithm – in algos course

Stepwise refinements technique is useful
here

State Modeling of Classes

Dynamic model to represent behavior of
an individual object or a system

Shows the states of an object and
transitions between them

Helps understand the object – focus only
on the important logical states

State diagrams can be very useful for
automated and systematic testing

State diagram of a stack

Design Verification

Main objective: does the design
implement the requirements

Analysis for performance, efficiency, etc
may also be done

If formal languages used for design
representation, tools can help

Design reviews remain the most common
approach for verification

Metrics

Background

Basic purpose to provide a quantitative
evaluation of the design (so the final product
can be better)

Size is always a metric – after design it can be
more accurately estimated

Number of modules and estimated size of each is
one approach

Complexity is another metric of interest – will
discuss a few metrics

Network Metrics

Focus on structure chart; a good SC is
considered as one with each module having one
caller (reduces coupling)

The more the SC deviates from a tree, the more
impure it is
 Graph impurity = n – e – 1
n – nodes, e- edges in the graph

Impurity of 0 means tree; as this no increases,
the impurity increases

Stability Metrics

Stability tries to capture the impact of a change
on the design

Higher the stability, the better it is

Stability of a module – the number of
assumptions made by other modules about this
module

Depends on module interface, global data the
module uses

Are known after design

Information Flow Metrics

Complexity of a module is viewed as
depending on intra-module complexity

Intramodule estimated by module size
and the information flowing
Size in LOC

Inflow – info flowing in the module

Outflow – info flowing out of the module

Dc = size * (inflow * outflow)2

Information flow metrics…

(inflow * outflow) represents total
combination of inputs and outputs

Its square reps interconnection between
the modules

Size represents the internal complexity of
the module

Product represents the total complexity

Identifying error-prone

modules

Uses avg complexity of modules and std
dev to identify error prone and complex
modules:

Error prone: If Dc > avg complexity + std_dev

Complex: If avg complexity < Dc < avg + std
dev

Normal: Otherwise

Complexity metrics for OO

Weighted methods per class
Complexity of a class depends on no of

classes and their complexity

Suppose complexity of methods is c1, c2..;
by some functional complexity metric

WMC = Σ ci

Large WMC might mean that the class is
more fault-prone

OO Metrics…

Depth of Inheritance Tree
DIT of C is depth from the root class

Length of the path from root to C

DIT is significant in predicting fault
proneness

Number of Children
Immediate no of subclasses of C

Gives a sense of reuse

OO Metrics…

Coupling between classes

No of classes to which this class is coupled

Two classes are coupled if methods of one
use methods or attr of other

Can be determined from code

(There are indirect forms of coupling that
cannot be statically determined)

Metrics…

Response for a class
The total no of methods that can be invoked from

this class

Captures the strength of connections

Lack of cohesion in methods
Two methods form a cohesive pair if they access

some common vars (form a non-cohesive pair if no
common var)

LCOM is the number of method pairs that are non-
cohesive – the no of cohesive pairs

Metrics with detailed

design

When logic is known, internal complexity
metrics can be determined

We will cover all detailed design based
metrics along with code metrics

Summary

Design for a system is a plan for a solution –
want correct and modular

Cohesion and coupling key concepts to ensure
modularity

Structure charts and structured design
methodology can be used for function-oriented
design

UML can be used for OO design
Various complexity metrics exist to evaluate a

design complexity

