
Process Concept
 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably
Process – a program in execution; process execution must progress in sequential fashion
A process includes:

 program counter

 stack

 data section

Process in Memory

Process State

As a process executes, it changes stat

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

Diagram of Process State

Process Control Block (PCB)

Information associated with each process

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

CPU Switch From Process to Process

Process Scheduling Queues

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main memory, ready and waiting to
execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

Ready Queue And Various I/O Device Queues

Representation of Process Scheduling

Schedulers
 Long-term scheduler (or job scheduler) – selects which processes should be brought

into the ready queue

 Short-term scheduler (or CPU scheduler) – selects which process should be
executed next and allocates CPU

Addition of Medium Term Scheduling

 Short-term scheduler is invoked very frequently (milliseconds) Þ (must be fast)

 Long-term scheduler is invoked very infrequently (seconds, minutes) Þ (may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than computations, many short CPU
bursts

 CPU-bound process – spends more time doing computations; few very long CPU
bursts

Context Switch
 When CPU switches to another process, the system must save the state of the old

process and load the saved state for the new process via a context switch

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful work while switching

 Time dependent on hardware support

Process Creation
 Parent process create children processes, which, in turn create other processes,

forming a tree of processes

 Generally, process identified and managed via a process identifier (pid)

 Resource sharing

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution

 Parent and children execute concurrently

 Parent waits until children terminate

 Address space

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork system call creates new process

 exec system call used after a fork to replace the process’ memory space with a new
program

Process Creation

C Program Forking Separate Process

int main()

{

pid_t pid;

 /* fork another process */

 pid = fork();

 if (pid < 0) { /* error occurred */

 fprintf(stderr, "Fork Failed");

 exit(-1);

 }

 else if (pid == 0) { /* child process */

 execlp("/bin/ls", "ls", NULL);

 }

 else { /* parent process */

 /* parent will wait for the child to complete */

 wait (NULL);

 printf ("Child Complete");

 exit(0);

 }

}

A tree of processes on a typical Solaris

Process Termination

 Process executes last statement and asks the operating system to delete it (exit)

 Output data from child to parent (via wait)

 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting
Some operating system do not allow child to continue if its parent terminates

All children terminated - cascading termination

Interprocess Communication
 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes, including sharing
data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

Communications Models

Cooperating Processes

 Independent process cannot affect or be affected by the execution of another process

 Cooperating process can affect or be affected by the execution of another process
Advantages of process cooperation

 Information sharing

 Computation speed-up

 Modularity

 Convenience

Producer-Consumer Problem
 Paradigm for cooperating processes, producer process produces information that is

consumed by a consumer process

 unbounded-buffer places no practical limit on the size of the buffer

 bounded-buffer assumes that there is a fixed buffer size

Bounded-Buffer – Shared-Memory Solution
Shared data

#define BUFFER_SIZE 10
typedef struct {
 . . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
Solution is correct, but can only use BUFFER_SIZE-1 elements

Bounded-Buffer – Producer
 while (true) {

 /* Produce an item */

 while (((in = (in + 1) % BUFFER SIZE count) == out)

 ; /* do nothing -- no free buffers */

 buffer[in] = item;

 in = (in + 1) % BUFFER SIZE;

 }

Bounded Buffer – Consumer
while (true) {

 while (in == out)

 ; // do nothing -- nothing to consume

 // remove an item from the buffer

 item = buffer[out];

 out = (out + 1) % BUFFER SIZE;

 return item;

 }

Interprocess Communication – Message Passing
 Mechanism for processes to communicate and to synchronize their actions

 Message system – processes communicate with each other without resorting to shared
variables

 IPC facility provides two operations:

 send(message) – message size fixed or variable

 receive(message)

 If P and Q wish to communicate, they need to:

 establish a communication link between them

 exchange messages via send/receive

 Implementation of communication link

 physical (e.g., shared memory, hardware bus)

 logical (e.g., logical properties)

Direct Communication
 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

Indirect Communication
 Messages are directed and received from mailboxes (also referred to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication links

 Link may be unidirectional or bi-directional

 Operations

 create a new mailbox

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

 send(A, message) – send a message to mailbox A

 receive(A, message) – receive a message from mailbox A

 Mailbox sharing

 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes

 Allow only one process at a time to execute a receive operation

 Allow the system to select arbitrarily the receiver. Sender is notified who the receiver
was.

Synchronization
 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous

 Blocking send has the sender block until the message is received

 Blocking receive has the receiver block until a message is available

 Non-blocking is considered asynchronous

 Non-blocking send has the sender send the message and continue

 Non-blocking receive has the receiver receive a valid message or null

Buffering
Queue of messages attached to the link; implemented in one of three ways
1. Zero capacity – 0 messages
Sender must wait for receiver (rendezvous)
2. Bounded capacity – finite length of n messages
Sender must wait if link full
3. Unbounded capacity – infinite length
Sender never waits

Examples of IPC Systems - POSIX
 POSIX Shared Memory

 Process first creates shared memory segment

 segment id = shmget(IPC PRIVATE, size, S IRUSR | S IWUSR);

 Process wanting access to that shared memory must attach to it

 shared memory = (char *) shmat(id, NULL, 0);

 Now the process could write to the shared memory

 printf(shared memory, "Writing to shared memory");

 When done a process can detach the shared memory from its address space

 shmdt(shared memory);

Examples of IPC Systems - Mach
 Mach communication is message based

 Even system calls are messages

 Each task gets two mailboxes at creation- Kernel and Notify

 Only three system calls needed for message transfer

 msg_send(), msg_receive(), msg_rpc()

 Mailboxes needed for commuication, created via

 port_allocate()

Examples of IPC Systems – Windows XP
 Message-passing centric via local procedure call (LPC) facility

 Only works between processes on the same system

 Uses ports (like mailboxes) to establish and maintain communication channels

 Communication works as follows:
The client opens a handle to the subsystem’s connection port object
The client sends a connection request
The server creates two private communication ports and returns the handle to one of

them to the client
The client and server use the corresponding port handle to send messages or

callbacks and to listen for replies

Local Procedure Calls in Windows XP

Communications in Client-Server Systems
 Sockets

 Remote Procedure Calls

 Remote Method Invocation (Java)

Sockets
 A socket is defined as an endpoint for communication

 Concatenation of IP address and port

 The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

 Communication consists between a pair of sockets

Socket Communication

Remote Procedure Calls

 Remote procedure call (RPC) abstracts procedure calls between processes on
networked systems

 Stubs – client-side proxy for the actual procedure on the server

 The client-side stub locates the server and marshalls the parameters

 The server-side stub receives this message, unpacks the marshalled parameters, and
peforms the procedure on the server

Execution of RPC

Remote Method Invocation
 Remote Method Invocation (RMI) is a Java mechanism similar to RPCs

 RMI allows a Java program on one machine to invoke a method on a remote object

Marshalling Parameters

Threads

 To introduce the notion of a thread — a fundamental unit of CPU utilization that forms
the basis of multithreaded computer systems

 To discuss the APIs for the Pthreads, Win32, and Java thread libraries

 To examine issues related to multithreaded programming

Single and Multithreaded Processes

Benefits
 Responsiveness

 Resource Sharing

 Economy

 Scalability
Multicore Programming
Multicore systems putting pressure on programmers, challenges include

 Dividing activities

 Balance

 Data splitting

 Data dependency

 Testing and debugging

Multithreaded Server Architecture

Concurrent Execution on a Single-core System

Parallel Execution on a Multicore System

User Threads
 Thread management done by user-level threads libraryThree primary thread libraries:

 POSIX Pthreads Win32 threads

 Java threads

Kernel Threads
Supported by the Kernel
Examples

 Windows XP/2000

 Solaris

 Linux

 Tru64 UNIX

 Mac OS X

Multithreading Models
 Many-to-One

 One-to-One

 Many-to-Many

Many-to-One
Many user-level threads mapped to single kernel thread
Examples:

 Solaris Green Threads

 GNU Portable Threads

One-to-One
Each user-level thread maps to kernel thread
Examples
Windows NT/XP/2000
Linux
Solaris 9 and later

Many-to-Many Model
 Allows many user level threads to be mapped to many kernel threads

 Allows the operating system to create a sufficient number of kernel threads

 Solaris prior to version 9
Windows NT/2000 with the ThreadFiber package

Two-level Model
Similar to M:M, except that it allows a user thread to be bound to kernel thread
Examples

 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier

Thread Libraries

 Thread library provides programmer with API for creating and managing threads

 Two primary ways of implementing

 Library entirely in user space

 Kernel-level library supported by the OS

Pthreads
 May be provided either as user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization

 API specifies behavior of the thread library, implementation is up to development of the
library

 Common in UNIX operating systems (Solaris, Linux, Mac OS X)

Java Threads
 Java threads are managed by the JVM

 Typically implemented using the threads model provided by underlying OS

 Java threads may be created by:Extending Thread class

 Implementing the Runnable interface
Threading Issues

 Semantics of fork() and exec() system calls

 Thread cancellation of target thread

 Asynchronous or deferred

 Signal handling

 Thread pools

 Thread-specific data

 Scheduler activations

Thread Cancellation
 Terminating a thread before it has finished

 Two general approaches:

 Asynchronous cancellation terminates the target thread immediately

 Deferred cancellation allows the target thread to periodically check if it should be
cancelled

Signal Handling
 Signals are used in UNIX systems to notify a process that a particular event has

occurred

 A signal handler is used to process signals

 1.Signal is generated by particular event

 2.Signal is delivered to a process

 3.Signal is handled

 Options:

 Deliver the signal to the thread to which the signal applies

 Deliver the signal to every thread in the process

 Deliver the signal to certain threads in the process

 Assign a specific threa to receive all signals for the process
Thread Pools

 Create a number of threads in a pool where they await work

 Advantages:

 Usually slightly faster to service a request with an existing thread than create a new
thread

 Allows the number of threads in the application(s) to be bound to the size of the pool

Thread Specific Data
 Allows each thread to have its own copy of data

 Useful when you do not have control over the thread creation process (i.e., when using
a thread pool)

Scheduler Activations
 Both M:M and Two-level models require communication to maintain the appropriate

number of kernel threads allocated to the application

 Scheduler activations provide upcalls - a communication mechanism from the kernel to
the thread library

 This communication allows an application to maintain the correct number kernel
threads

Windows XP Threads

Implements the one-to-one mapping, kernel-level

 Each thread contains

 A thread id

 Register set

 Separate user and kernel stacks

 Private data storage area

 The register set, stacks, and private storage area are known as the context of the
threads

 The primary data structures of a thread include:

 ETHREAD (executive thread block)

 KTHREAD (kernel thread block)

 TEB (thread environment block)

Linux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task to share the address space of the parent task (process)

CPU Scheduling
 To introduce CPU scheduling, which is the basis for multiprogrammed operating

systems

 To describe various CPU-scheduling algorithms

 To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular
system

 Maximum CPU utilization obtained with multiprogramming

 CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O
wait

 CPU burst distribution

Histogram of CPU-burst Times

Alternating Sequence of CPU And I/O Bursts

CPU Scheduler
Selects from among the processes in memory that are ready to execute, and allocates the
CPU to one of them
CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates
Scheduling under 1 and 4 is nonpreemptive
All other scheduling is preemptive
Dispatcher

 Dispatcher module gives control of the CPU to the process selected by the short-term
scheduler; this involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to restart that program

 Dispatch latency – time it takes for the dispatcher to stop one process and start
another running

Scheduling Criteria
 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per time unit

 Turnaround time – amount of time to execute a particular process

 Waiting time – amount of time a process has been waiting in the ready queue

 Response time – amount of time it takes from when a request was submitted until the
first response is produced, not output (for time-sharing environment)

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

First-Come, First-Served (FCFS) Scheduling
Process Burst Time
P1 24

 P2 3

 P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27

Average waiting time: (0 + 24 + 27)/3 = 17
Suppose that the processes arrive in the order
 P2 , P3 , P1

The Gantt chart for the schedule is:Waiting time for P1 = 6; P2 = 0; P3 = 3Average

waiting time: (6 + 0 + 3)/3 = 3
Much better than previous case
Convoy effect short process behind long process

 P1 P2 P3

24 27 30 0

 P1 P3 P2

6 3 30 0

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst. Use these lengths to
schedule the process with the shortest time

 SJF is optimal – gives minimum average waiting time for a given set of processes
The difficulty is knowing
 Process Arrival Time Burst Time

 P1 0.0 6

 P2 2.0 8

 P3 4.0 7

 P4 5.0 3

SJF scheduling chart
verage waiting time = (3 + 16 + 9 + 0) / 4 = 7the length of the next CPU request

Determining Length of Next CPU Burst

 Can only estimate the length

 Can be done by using the length of previous CPU bursts, using exponential averaging

Prediction of the Length of the Next CPU Burst

 P4 P3 P1

3 16 0 9

P2

24

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.

 1n

th
n nt

Examples of Exponential Averaging
a =0
tn+1 = tn

Recent history does not count
a =1
 tn+1 = a tn

Only the actual last CPU burst counts
If we expand the formula, we get:
tn+1 = a tn+(1 - a)a tn -1 + …

 +(1 - a)j a tn -j + …

 +(1 - a)n +1 t0

Since both a and (1 - a) are less than or equal to 1, each successive term has less weight

than its predecessor

Priority Scheduling
 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority (smallest integer º highest

priority)

 Preemptive

 nonpreemptive

 SJF is a priority scheduling where priority is the predicted next CPU burst time

 Problem º Starvation – low priority processes may never execute

 Solution º Aging – as time progresses increase the priority of the process

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum), usually 10-100
milliseconds. After this time has elapsed, the process is preempted and added to the
end of the ready queue.

 If there are n processes in the ready queue and the time quantum is q, then each
process gets 1/n of the CPU time in chunks of at most q time units at once. No process
waits more than (n-1)q time units.

 Performance

 q large Þ FIFO

 q small Þ q must be large with respect to context switch, otherwise overhead is too high

Example of RR with Time Quantum = 4
Process Burst Time
P1 24

 P2 3

 P3 3

The Gantt chart is:

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Typically, higher average turnaround than SJF, but better response

Time Quantum and Context Switch Time

Turnaround Time Varies With The Time Quantum

Multilevel Queue
 Ready queue is partitioned into separate queues:

foreground (interactive)
background (batch)

 Each queue has its own scheduling algorithm

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues

 Fixed priority scheduling; (i.e., serve all from foreground then from background).
Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time which it can schedule
amongst its processes; i.e., 80% to foreground in RR

20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue

 A process can move between the various queues; aging can be implemented this way

 Multilevel-feedback-queue scheduler defined by the following parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

method used to determine which queue a process will enter when that process needs service

Example of Multilevel Feedback Queue
Three queues:

 Q0 – RR with time quantum 8 milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8

milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q1.

 At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does

not complete, it is preempted and moved to queue Q2.

Multilevel Feedback Queues

Thread Scheduling

 Distinction between user-level and kernel-level threads

 Many-to-one and many-to-many models, thread library schedules user-level threads to
run on LWP

 Known as process-contention scope (PCS) since scheduling competition is within the
process

 Kernel thread scheduled onto available CPU is system-contention scope (SCS) –
competition among all threads in system

Pthread Scheduling
 API allows specifying either PCS or SCS during thread creation

 PTHREAD SCOPE PROCESS schedules threads using PCS scheduling

 PTHREAD SCOPE SYSTEM schedules threads using SCS scheduling.

Pthread Scheduling API
#include <pthread.h>

#include <stdio.h>

#define NUM THREADS 5

int main(int argc, char *argv[])

{

 int i; pthread t tid[NUM THREADS];

 pthread attr t attr;

 /* get the default attributes */

 pthread attr init(&attr);

 /* set the scheduling algorithm to PROCESS or SYSTEM */

 pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);

 /* set the scheduling policy - FIFO, RT, or OTHER */

 pthread attr setschedpolicy(&attr, SCHED OTHER);

 /* create the threads */

 for (i = 0; i < NUM THREADS; i++)

 pthread create(&tid[i],&attr,runner,NULL);

/* now join on each thread */

 for (i = 0; i < NUM THREADS; i++)

 pthread join(tid[i], NULL);

}

 /* Each thread will begin control in this function */
void *runner(void *param)

{

 printf("I am a thread\n");

 pthread exit(0);

}

Multiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are available

 Homogeneous processors within a multiprocessor

 Asymmetric multiprocessing – only one processor accesses the system data
structures, alleviating the need for data sharing

 Symmetric multiprocessing (SMP) – each processor is self-scheduling, all
processes in common ready queue, or each has its own private queue of ready
processes

 Processor affinity – process has affinity for processor on which it is currently running

 soft affinity

 hard affinity

NUMA and CPU Scheduling

Multicore Processors

 Recent trend to place multiple processor cores on same physical chip

 Faster and consume less power

 Multiple threads per core also growing

 Takes advantage of memory stall to make progress on another thread while memory
retrieve happens

Multithreaded Multicore System

Operating System Examples

 Solaris scheduling

 Windows XP scheduling

 Linux scheduling

Solaris Dispatch Table

Solaris Scheduling

Windows XP Priorities

Linux Scheduling

 Constant order O(1) scheduling time

 Two priority ranges: time-sharing and real-time

 Real-time range from 0 to 99 and nice value from 100 to 140

Priorities and Time-slice length

List of Tasks Indexed According to Priorities

Algorithm Evaluation

 Deterministic modeling – takes a particular predetermined workload and defines the
performance of each algorithm for that workload

 Queueing models

 Implementation
Evaluation of CPU schedulers by Simulation

