
Process Concept 
 An operating system executes a variety of programs: 

 Batch system – jobs 

 Time-shared systems – user programs or tasks 

 Textbook uses the terms job and process almost interchangeably 
Process – a program in execution; process execution must progress in sequential fashion 
A process includes: 

 program counter  

 stack 

 data section 

Process in Memory 
 
 
 

 

 

 

 

 
Process State 
 
As a process executes, it changes stat

 new:  The process is being created 

 running:  Instructions are being executed 

 waiting:  The process is waiting for some event to occur 

 ready:  The process is waiting to be assigned to a processor 

 terminated:  The process has finished execution 

Diagram of Process State 
 

 

 

 

 

 

 



Process Control Block (PCB) 
 
Information associated with each process 

 Process state 

 Program counter 

 CPU registers 

 CPU scheduling information 

 Memory-management information 

 Accounting information 

 I/O status information 

 

 
CPU Switch From Process to Process 
 

 

 

 

 

 

 

 

 

 

 

 
Process Scheduling Queues 
 

 Job queue – set of all processes in the system 

 Ready queue – set of all processes residing in main memory, ready and waiting to 
execute 

 Device queues – set of processes waiting for an I/O device 

 Processes migrate among the various queues 

 
 



Ready Queue And Various I/O Device Queues 
 
 

 

 

 

 

 

 

 

 

 

 

 
Representation of Process Scheduling 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Schedulers 
 Long-term scheduler  (or job scheduler) – selects which processes should be brought 

into the ready queue 

 Short-term scheduler  (or CPU scheduler) – selects which process should be 
executed next and allocates CPU 

Addition of Medium Term Scheduling 
 

 

 

 

 

 

 
 Short-term scheduler is invoked very frequently (milliseconds) Þ (must be fast) 

 Long-term scheduler is invoked very infrequently (seconds, minutes) Þ (may be slow) 

 The long-term scheduler controls the degree of multiprogramming 

 Processes can be described as either: 

 I/O-bound process – spends more time doing I/O than computations, many short CPU 
bursts 

 CPU-bound process – spends more time doing computations; few very long CPU 
bursts 

Context Switch 
 When CPU switches to another process, the system must save the state of the old 

process and load the saved state for the new process via a context switch 

 Context of a process represented in the PCB 

 Context-switch time is overhead; the system does no useful work while switching 

 Time dependent on hardware support 

Process Creation 
 Parent process create children processes, which, in turn create other processes, 

forming a tree of processes 

 Generally, process identified and managed via a process identifier (pid) 

 Resource sharing 

 Parent and children share all resources 

 Children share subset of parent’s resources 

 Parent and child share no resources 

 Execution 

 Parent and children execute concurrently 

 Parent waits until children terminate 



 Address space 

 Child duplicate of parent 

 Child has a program loaded into it 

 UNIX examples 

 fork system call creates new process 

 exec system call used after a fork to replace the process’ memory space with a new 
program 

Process Creation 
 

 

 

 

 

 
C Program Forking Separate Process 
 

int main() 

{ 

pid_t  pid; 

 /* fork another process */ 

 pid = fork(); 

 if (pid < 0) { /* error occurred */ 

  fprintf(stderr, "Fork Failed"); 

  exit(-1); 

 } 

 else if (pid == 0) { /* child process */ 

  execlp("/bin/ls", "ls", NULL); 

 } 

 else { /* parent process */ 

  /* parent will wait for the child to complete */ 

  wait (NULL); 

  printf ("Child Complete"); 

  exit(0); 

 } 

} 

 



A tree of processes on a typical Solaris 
 

 

 

 

 

 

 

 

 

 
Process Termination 

 Process executes last statement and asks the operating system to delete it (exit) 

 Output data from child to parent (via wait) 

 Process’ resources are deallocated by operating system 

 Parent may terminate execution of children processes (abort) 

 Child has exceeded allocated resources 

 Task assigned to child is no longer required 

 If parent is exiting 
Some operating system do not allow child to continue if its parent terminates 

All children terminated - cascading termination 

Interprocess Communication 
 Processes within a system may be independent or cooperating 

 Cooperating process can affect or be affected by other processes, including sharing 
data 

 Reasons for cooperating processes: 

 Information sharing 

 Computation speedup 

 Modularity 

 Convenience  

 Cooperating processes need interprocess communication (IPC) 

 Two models of IPC 

 Shared memory 

 Message passing 



 
Communications Models  
 
 
 
 
 

 

 

 

 

 

 
Cooperating Processes 

 Independent process cannot affect or be affected by the execution of another process 

 Cooperating process can affect or be affected by the execution of another process 
Advantages of process cooperation 

 Information sharing  

 Computation speed-up 

 Modularity 

 Convenience 

Producer-Consumer Problem 
 Paradigm for cooperating processes, producer process produces information that is 

consumed by a consumer process 

 unbounded-buffer places no practical limit on the size of the buffer 

 bounded-buffer assumes that there is a fixed buffer size 

Bounded-Buffer – Shared-Memory Solution 
Shared data 

#define BUFFER_SIZE 10 
typedef struct { 
 . . . 
} item; 
item buffer[BUFFER_SIZE]; 
int in = 0; 
int out = 0; 
Solution is correct, but can only use BUFFER_SIZE-1 elements 

 



Bounded-Buffer – Producer 
 while (true) { 

   /* Produce an item */ 

        while (((in = (in + 1) % BUFFER SIZE count)  == out) 

      ;   /* do nothing -- no free buffers */ 

     buffer[in] = item; 

     in = (in + 1) % BUFFER SIZE; 

     } 

  

Bounded Buffer – Consumer 
while (true) { 

          while (in == out) 

                 ; // do nothing -- nothing to consume 

      // remove an item from the buffer 

      item = buffer[out]; 

      out = (out + 1) % BUFFER SIZE; 

 return item; 

     } 

Interprocess Communication – Message Passing 
 Mechanism for processes to communicate and to synchronize their actions 

 Message system – processes communicate with each other without resorting to shared 
variables 

 IPC facility provides two operations: 

 send(message) – message size fixed or variable  

 receive(message) 

 If P and Q wish to communicate, they need to: 

 establish a communication link between them 

 exchange messages via send/receive 

 Implementation of communication link 

 physical (e.g., shared memory, hardware bus) 

 logical (e.g., logical properties) 

Direct Communication 
 Processes must name each other explicitly: 

 send (P, message) – send a message to process P 

 receive(Q, message) – receive a message from process Q 

 Properties of communication link 

 Links are established automatically 

 A link is associated with exactly one pair of communicating processes 

 Between each pair there exists exactly one link 

 The link may be unidirectional, but is usually bi-directional 

 



Indirect Communication 
 Messages are directed and received from mailboxes (also referred to as ports) 

 Each mailbox has a unique id 

 Processes can communicate only if they share a mailbox 

 Properties of communication link 

 Link established only if processes share a common mailbox 

 A link may be associated with many processes 

 Each pair of processes may share several communication links 

 Link may be unidirectional or bi-directional 

 Operations 

 create a new mailbox 

 send and receive messages through mailbox 

 destroy a mailbox 

 Primitives are defined as: 

 send(A, message) – send a message to mailbox A 

 receive(A, message) – receive a message from mailbox A 

 Mailbox sharing 

 P1, P2, and P3 share mailbox A 

 P1, sends; P2 and P3 receive 

 Who gets the message? 

 Solutions 

 Allow a link to be associated with at most two processes 

 Allow only one process at a time to execute a receive operation 

 Allow the system to select arbitrarily the receiver.  Sender is notified who the receiver 
was. 

Synchronization 
 Message passing may be either blocking or non-blocking 

 Blocking is considered synchronous 

 Blocking send has the sender block until the message is received 

 Blocking receive has the receiver block until a message is available 

 Non-blocking is considered asynchronous 

 Non-blocking send has the sender send the message and continue 

 Non-blocking receive has the receiver receive a valid message or null 

Buffering 
Queue of messages attached to the link; implemented in one of three ways 
1. Zero capacity – 0 messages 
Sender must wait for receiver (rendezvous) 
2. Bounded capacity – finite length of n messages 
Sender must wait if link full 
3. Unbounded capacity – infinite length  
Sender never waits 



Examples of IPC Systems - POSIX 
 POSIX Shared Memory 

 Process first creates shared memory segment 

 segment id = shmget(IPC PRIVATE, size, S IRUSR | S IWUSR); 

 Process wanting access to that shared memory must attach to it 

 shared memory = (char *) shmat(id, NULL, 0); 

 Now the process could write to the shared memory 

 printf(shared memory, "Writing to shared memory"); 

 When done a process can detach the shared memory from its address space 

 shmdt(shared memory); 

Examples of IPC Systems - Mach 
 Mach communication is message based 

 Even system calls are messages 

 Each task gets two mailboxes at creation- Kernel and Notify 

 Only three system calls needed for message transfer 

 msg_send(), msg_receive(), msg_rpc() 

 Mailboxes needed for commuication, created via 

 port_allocate() 

Examples of IPC Systems – Windows XP 
 Message-passing centric via local procedure call (LPC) facility 

 Only works between processes on the same system 

 Uses ports (like mailboxes) to establish and maintain communication channels 

 Communication works as follows: 
The client opens a handle to the subsystem’s connection port object 
The client sends a connection request 
The server creates two private communication ports and returns the handle to one of 

them to the client 
The client and server use the corresponding port handle to send messages or 

callbacks and to listen for replies 

Local Procedure Calls in Windows XP 
 
 

 

 

 

 

 



Communications in Client-Server Systems 
 Sockets 

 Remote Procedure Calls 

 Remote Method Invocation (Java) 

Sockets 
 A socket is defined as an endpoint for communication 

 Concatenation of IP address and port 

 The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8 

 Communication consists between a pair of sockets 

Socket Communication 
 

 

 

 
Remote Procedure Calls 

 Remote procedure call (RPC) abstracts procedure calls between processes on 
networked systems 

 Stubs – client-side proxy for the actual procedure on the server 

 The client-side stub locates the server and marshalls the parameters 

 The server-side stub receives this message, unpacks the marshalled parameters, and 
peforms the procedure on the server 

Execution of RPC 
 
 

 

 

  

 

 

 

 

 

 

 



Remote Method Invocation 
 Remote Method Invocation (RMI) is a Java mechanism similar to RPCs 

 RMI allows a Java program on one machine to invoke a method on a remote object 

  

 

 

 
 
Marshalling Parameters 
 

 

 

  

 

 

 

 

 

 

 
Threads 

 To introduce the notion of a thread — a fundamental unit of CPU utilization that forms 
the basis of multithreaded computer systems 

 To discuss the APIs for the Pthreads, Win32, and Java thread libraries 

 To examine issues related to multithreaded programming 

Single and Multithreaded Processes 
 
 

 

 

 

 



Benefits 
 Responsiveness 

 Resource Sharing

 Economy

 Scalability 
Multicore Programming 
Multicore systems putting pressure on programmers, challenges include 

 Dividing activities 

 Balance 

 Data splitting 

 Data dependency 

 Testing and debugging 

Multithreaded Server Architecture 
 

  

 

 

 

 

 

 

 
Concurrent Execution on a Single-core System 
 

  

 

 
Parallel Execution on a Multicore System 
 
 

 

 

 



User Threads 
 Thread management done by user-level threads libraryThree primary thread libraries: 

 POSIX Pthreads  Win32 threads 

 Java threads 

Kernel Threads 
Supported by the Kernel
Examples 

 Windows XP/2000 

 Solaris 

 Linux 

 Tru64 UNIX 

 Mac OS X 

Multithreading Models 
 Many-to-One 

 One-to-One 

 Many-to-Many 

Many-to-One 
Many user-level threads mapped to single kernel thread 
Examples: 

 Solaris Green Threads 

 GNU Portable Threads 

 
One-to-One 
Each user-level thread maps to kernel thread 
Examples 
Windows NT/XP/2000 
Linux 
Solaris 9 and later 

 

 

 

 

 

 

 

 
 



Many-to-Many Model 
 Allows many user level threads to be mapped to many kernel threads 

 Allows the  operating system to create a sufficient number of kernel threads 

 Solaris prior to version 9 
Windows NT/2000 with the ThreadFiber package 

 

 

 

 

 

 

 

 

 
Two-level Model 
Similar to M:M, except that it allows a user thread to be bound to kernel thread 
Examples 

 IRIX 

 HP-UX 

 Tru64 UNIX 

 Solaris 8 and earlier 

 

 

 

 

 
Thread Libraries 

 Thread library provides programmer with API for creating and managing threads 

 Two primary ways of implementing 

 Library entirely in user space 

 Kernel-level library supported by the OS 

Pthreads 
 May be provided either as user-level or kernel-level 

 A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization 



 API specifies behavior of the thread library, implementation is up to development of the 
library 

 Common in UNIX operating systems (Solaris, Linux, Mac OS X) 

Java Threads 
 Java threads are managed by the JVM 

 Typically implemented using the threads model provided by underlying OS 

 Java threads may be created by:Extending Thread class 

 Implementing the Runnable interface 
Threading Issues 

 Semantics of fork() and exec() system calls 

 Thread cancellation of target thread 

 Asynchronous or deferred 

 Signal handling 

 Thread pools 

 Thread-specific data 

 Scheduler activations 

Thread Cancellation 
 Terminating a thread before it has finished 

 Two general approaches: 

 Asynchronous cancellation terminates the target thread  immediately 

 Deferred cancellation allows the target thread to periodically check if it should be 
cancelled 

Signal Handling 
 Signals are used in UNIX systems to notify a process that a particular event has 

occurred 

 A signal handler is used to process signals 

 1.Signal is generated by particular event 

 2.Signal is delivered to a process 

 3.Signal is handled 

 Options: 

 Deliver the signal to the thread to which the signal applies 

 Deliver the signal to every thread in the process 

 Deliver the signal to certain threads in the process 

 Assign a specific threa to receive all signals for the process 
Thread Pools 

 Create a number of threads in a pool where they await work 

 Advantages: 

 Usually slightly faster to service a request with an existing thread than create a new 
thread 

 Allows the number of threads in the application(s) to be bound to the size of the pool 



Thread Specific Data 
 Allows each thread to have its own copy of data 

 Useful when you do not have control over the thread creation process (i.e., when using 
a thread pool) 

Scheduler Activations 
 Both M:M and Two-level models require communication to maintain the appropriate 

number of kernel threads allocated to the application 

 Scheduler activations provide upcalls - a communication mechanism from the kernel to 
the thread library 

 This communication allows an application to maintain the correct number kernel 
threads 

Windows XP Threads 
 

 

 

 

 

 

 

 

 

 

 

 
Implements the one-to-one mapping, kernel-level 

 Each thread contains 

 A thread id 

 Register set 

 Separate user and kernel stacks 

 Private data storage area 

 The register set, stacks, and private storage area are known as the context of the 
threads 

 The primary data structures of a thread include: 

 ETHREAD (executive thread block) 

 KTHREAD (kernel thread block) 



 TEB (thread environment block) 

Linux Threads 
 

 

 

 

 

 

 
 Linux refers to them as tasks rather than threads 

 Thread creation is done through clone() system call 

 clone() allows a child task to share the address space of the parent task (process) 

CPU Scheduling 
 To introduce CPU scheduling, which is the basis for multiprogrammed operating 

systems 

 To describe various CPU-scheduling algorithms 

 To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular 
system 

 Maximum CPU utilization obtained with multiprogramming 

 CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O 
wait 

 CPU burst distribution 

Histogram of CPU-burst Times 
 

 

 

 

 

 

 

 

 

 



Alternating Sequence of CPU And I/O Bursts 
 

 

 

 

 

 

 

 

 

 

 
CPU Scheduler
Selects from among the processes in memory that are ready to execute, and allocates the 
CPU to one of them 
CPU scheduling decisions may take place when a process: 
1. Switches from running to waiting state 
2. Switches from running to ready state 
3. Switches from waiting to ready 
4. Terminates 
Scheduling under 1 and 4 is nonpreemptive 
All other scheduling is preemptive 
Dispatcher 

 Dispatcher module gives control of the CPU to the process selected by the short-term 
scheduler; this involves: 

 switching context 

 switching to user mode 

 jumping to the proper location in the user program to restart that program 

 Dispatch latency – time it takes for the dispatcher to stop one process and start 
another running 

Scheduling Criteria 
 CPU utilization – keep the CPU as busy as possible 

 Throughput – # of processes that complete their execution per time unit 

 Turnaround time – amount of time to execute a particular process 

 Waiting time – amount of time a process has been waiting in the ready queue 



 Response time – amount of time it takes from when a request was submitted until the 
first response is produced, not output  (for time-sharing environment) 

 Max CPU utilization 

 Max throughput 

 Min turnaround time  

 Min waiting time  

 Min response time 

First-Come, First-Served (FCFS) Scheduling 
Process Burst Time  
P1 24 

 P2  3 

 P3  3  

Suppose that the processes arrive in the order: P1 , P2 , P3   

The Gantt Chart for the schedule is: 

 

 

 

 
 
 

 

Waiting time for P1  = 0; P2  = 24; P3 = 27 

Average waiting time:  (0 + 24 + 27)/3 = 17 
Suppose that the processes arrive in the order 
   P2 , P3 , P1  

The Gantt chart for the schedule is:Waiting time for P1 = 6; P2 = 0; P3 = 3Average 

waiting time:   (6 + 0 + 3)/3 = 3 
Much better than previous case 
Convoy effect short process behind long process 

  

 

 
 
 
 
 

 P1 P2 P3 

24 27 30 0 

 P1 P3 P2 

6 3 30 0 



Shortest-Job-First (SJF) Scheduling 
 

 Associate with each process the length of its next CPU burst.  Use these lengths to 
schedule the process with the shortest time 

 SJF is optimal – gives minimum average waiting time for a given set of processes 
The difficulty is knowing 
 Process Arrival Time Burst Time  
 
 P1 0.0 6 

 P2  2.0 8 

 P3 4.0 7 

 P4 5.0 3 

SJF scheduling chart 
verage waiting time = (3 + 16 + 9 + 0) / 4 = 7the length of the next CPU request 
 
 
 
 

 

 

 

 
Determining Length of Next CPU Burst 

 Can only estimate the length 

 Can be done by using the length of previous CPU bursts, using exponential averaging 

Prediction of the Length of the Next CPU Burst 
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Examples of Exponential Averaging 
a =0 
tn+1 = tn 

Recent history does not count 
a =1 
 tn+1 = a tn 

Only the actual last CPU burst counts 
If we expand the formula, we get: 
tn+1 = a tn+(1 - a)a tn -1 + … 

            +(1 - a )j a tn -j + … 

            +(1 - a )n +1 t0 

Since both a and (1 - a) are less than or equal to 1, each successive term has less weight 

than its predecessor 

Priority Scheduling 
 A priority number (integer) is associated with each process 

 The CPU is allocated to the process with the highest priority (smallest integer º highest 

priority) 

 Preemptive 

 nonpreemptive 

 SJF is a priority scheduling where priority is the predicted next CPU burst time 

 Problem º Starvation – low priority processes may never execute 

 Solution º Aging – as time progresses increase the priority of the process 

Round Robin (RR) 
 

 Each process gets a small unit of CPU time (time quantum), usually 10-100 
milliseconds.  After this time has elapsed, the process is preempted and added to the 
end of the ready queue. 

 If there are n processes in the ready queue and the time quantum is q, then each 
process gets 1/n of the CPU time in chunks of at most q time units at once.  No process 
waits more than (n-1)q time units. 

 Performance 

 q large Þ FIFO 

 q small Þ q must be large with respect to context switch, otherwise overhead is too high 

Example of RR with Time Quantum = 4 
Process Burst Time 
P1 24 

 P2   3 

 P3 3 

  
The Gantt chart is:  
 

P1 P2 P3 P1 P1 P1 P1 P1 

0 4 7 10 14 18 22 26 30 



Typically, higher average turnaround than SJF, but better response 
 
Time Quantum and Context Switch Time 
 

 

 

 

 

 

 

 

 

 

 
Turnaround Time Varies With The Time Quantum 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Multilevel Queue 
 Ready queue is partitioned into separate queues: 

foreground (interactive) 
background (batch) 

 Each queue has its own scheduling algorithm 

 foreground – RR 

 background – FCFS 

 Scheduling must be done between the queues 

 Fixed priority scheduling; (i.e., serve all from foreground then from background).  
Possibility of starvation. 

 Time slice – each queue gets a certain amount of CPU time which it can schedule 
amongst its processes; i.e., 80% to foreground in RR 

20% to background in FCFS  
 
 

Multilevel Queue Scheduling 
 
 

 

 

 

 

 

 

 

 

 

 

 
Multilevel Feedback Queue 

 A process can move between the various queues; aging can be implemented this way 

 Multilevel-feedback-queue scheduler defined by the following parameters: 

 number of queues 

 scheduling algorithms for each queue 

 method used to determine when to upgrade a process 

 method used to determine when to demote a process 



method used to determine which queue a process will enter when that process needs service 

Example of Multilevel Feedback Queue 
Three queues:  

 Q0 – RR with time quantum 8 milliseconds 

 Q1 – RR time quantum 16 milliseconds 

 Q2 – FCFS 

 Scheduling 

 A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8 

milliseconds.  If it does not finish in 8 milliseconds, job is moved to queue Q1. 

 At Q1 job is again served FCFS and receives 16 additional milliseconds.  If it still does 

not complete, it is preempted and moved to queue Q2. 

Multilevel Feedback Queues 
 

 

 

 

 

 

 

 
Thread Scheduling 

 Distinction between user-level and kernel-level threads 

 Many-to-one and many-to-many models, thread library schedules user-level threads to 
run on LWP 

 Known as process-contention scope (PCS) since scheduling competition is within the 
process 

 Kernel thread scheduled onto available CPU is system-contention scope (SCS) – 
competition among all threads in system 

Pthread Scheduling 
 API allows specifying either PCS or SCS during thread creation 

 PTHREAD SCOPE PROCESS schedules threads using PCS scheduling 

 PTHREAD SCOPE SYSTEM schedules threads using SCS scheduling. 

 
 
 
 
 



Pthread Scheduling API 
#include <pthread.h> 

#include <stdio.h> 

#define NUM THREADS 5 

int main(int argc, char *argv[]) 

{ 

  int i; pthread t tid[NUM THREADS]; 

 pthread attr t attr; 

 /* get the default attributes */ 

 pthread attr init(&attr); 

 /* set the scheduling algorithm to PROCESS or SYSTEM */ 

 pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM); 

 /* set the scheduling policy - FIFO, RT, or OTHER */ 

 pthread attr setschedpolicy(&attr, SCHED OTHER); 

 /* create the threads */ 

 for (i = 0; i < NUM THREADS; i++) 

  pthread create(&tid[i],&attr,runner,NULL); 

/* now join on each thread */ 

 for (i = 0; i < NUM THREADS; i++) 

  pthread join(tid[i], NULL); 

} 

 /* Each thread will begin control in this function */ 
void *runner(void *param) 

{  

 printf("I am a thread\n"); 

 pthread exit(0); 

} 
 
Multiple-Processor Scheduling 

 CPU scheduling more complex when multiple CPUs are available 

 Homogeneous processors within a multiprocessor 

 Asymmetric multiprocessing – only one processor accesses the system data 
structures, alleviating the need for data sharing 

 Symmetric multiprocessing  (SMP) – each processor is self-scheduling, all 
processes in common ready queue, or each has its own private queue of ready 
processes 

 Processor affinity – process has affinity for processor on which it is currently running 

 soft affinity 

 hard affinity 

 



NUMA and CPU Scheduling 
 

 

 

 

 

 

 
Multicore Processors 

 Recent trend to place multiple processor cores on same physical chip 

 Faster and consume less power 

 Multiple threads per core also growing 

 Takes advantage of memory stall to make progress on another thread while memory 
retrieve happens 

  

Multithreaded Multicore System 
 

 

 

 

 
Operating System Examples 

 Solaris scheduling 

 Windows XP scheduling 

 Linux scheduling 

Solaris Dispatch Table  
 

 

 

 

 

 



Solaris Scheduling 
 
 

 

 

 

 

 

 

 

 

 

 

 
Windows XP Priorities 
 

 

 

 

 

 

 

 

 
Linux Scheduling 

 Constant order O(1) scheduling time 

 Two priority ranges: time-sharing and real-time 

 Real-time range from 0 to 99 and nice value from 100 to 140 
 
 
 



Priorities and Time-slice length 
 

 

 

 

 

 

 

 

 
List of Tasks Indexed According to Priorities 
 
 

 

 

 

 

 

 
Algorithm Evaluation 

 Deterministic modeling – takes a particular predetermined workload and defines the 
performance of each algorithm  for that workload 

 Queueing models 

 Implementation 
Evaluation of CPU schedulers by Simulation 
 

 

 

 

 


