
UNIT-2

 Inheritance –Definition

 Single Inheritance

 Benefits of inheritance

 Member access rules

 super classes

 Polymorphism

 Method overriding

 Using final with inheritance

 abstract classes and

 Base class object.

Definition

 Inheritance is the process of acquiring the properties by the sub class (or

derived class or child class) from the super class (or base class or parent

class).

 When a child class(newly defined abstraction) inherits(extends) its

parent class (being inherited abstraction), all the properties and methods

of parent class becomes the member of child class.

 In addition, child class can add new data fields(properties) and

behaviors(methods), and

 It can override methods that are inherited from its parent class.

Inheritance Basics

The key word extends is used to define inheritance in Java.

Syntax:-

class subclass-name extends superclass-name {

 // body of the class

}

Single Inheritance

 //base class:

 class A{

 //members of A

 }

 //Derived class syntax:

 class B extends A{

 //members of B

 }

A

B

-Derivation of a class from only one base class is called single inheritance.

// Create a superclass.

class A {

 int i, j;

 void showij() {

 System.out.println("i and j: " + i + " " + j);

 }

}

// Create a subclass by extending class A.

class B extends A {

 int k;

 void showk() {

 System.out.println("k: " + k);

 }

 void sum() {

 System.out.println("i+j+k: " + (i+j+k));

 }

}

class SimpleInheritance {

 public static void main(String args[]) {

 A superOb = new A();

 B subOb = new B();

 // The superclass may be used by itself.

 superOb.i = 10;

 superOb.j = 20;

 System.out.println("Contents of superOb:");

 superOb.showij();

/* The subclass has access to all public members

of its superclass. */

subOb.i = 7;

subOb.j = 8;

subOb.k = 9;

System.out.println("Contents of subOb: ");

subOb.showij();

subOb.showk();

System.out.println();

System.out.println("Sum of i, j and k in subOb:");

subOb.sum();

}

}

Contents of superOb:

i and j: 10 20

Contents of subOb:

i and j: 7 8

k: 9

Sum of i, j and k in subOb:

i+j+k: 24

The Benefits of Inheritance

 Software Reusability (among projects)

 Code (class/package) can be reused among the projects.

 Ex., code to insert a new element into a table can be written once and

reused.

 Code Sharing (within a project)

 It occurs when two or more classes inherit from a single parent class.

 This code needs to be written only once and will contribute only once to

the size of the resulting program.

 Increased Reliability (resulting from reuse and sharing of code)

 When the same components are used in two or more applications, the

bugs can be discovered more quickly.

 Information Hiding

 The programmer who reuses a software component needs only to

understand the nature of the component and its interface.

 It is not necessary for the programmer to have detailed information such

as the techniques used to implement the component.

 Rapid Prototyping (quickly assemble from pre-existing components)

 Software systems can be generated more quickly and easily by

assembling preexisting components.

 This type of development is called Rapid Prototyping.

 Consistency of Interface(among related objects)

 When two or more classes inherit from same superclass, the behavior they

inherit will be the same.

 Thus , it is easier to guarantee that interfaces to similar objects are

similar.

 Software Components

 Inheritance enables programmers to construct reusable components.

 Polymorphism and Frameworks (high-level reusable components)

 Normally, code reuse decreases as one moves up the levels of

abstraction.

 Lowest-level routines may be used in several different projects, but

higher-level routines are tied to a particular application.

 Polymorphism in programming languages permits the programmer to

generate high-level reusable components that can be tailored to fit

different applications by changes in their low-level parts.

A

B

Single Inheritance Hierarchical Inheritance

X

A B C

Multilevel Inheritance

A

B

C

Multiple Inheritance

A B

C

Types of Inheritance

//Single Inheritance

class A{

}

class B extends A{

}

//Hierarchical Inheritance

class A{

}

class B extends A{

}

class C extends A{

}

//Multiple Inheritance

interface one{

}

interface two{

}

class A implements one, two{

}

//Multilevel Inheritance

class A{

}

class B extends A{

}

class C extends B{

}

 Multiple Inheritance can be implemented by implementing multiple

interfaces not by extending multiple classes.

 Example :

 class B extends A implements C , D{

 } OK

 class C extends A extends B{ class C extends A ,B{

 } }

WRONG

A Superclass Variable Can Reference a Subclass Object

• When a reference to a subclass object is assigned to a superclass variable, you

 will have access only to those parts of the object defined by the superclass.

 Ex:

 class A{

 int i=10;

 }

class B extends A{

 int j=30;

}

class Test{

 public static void main(String args[]){

 A a=new A();

 B b=new B();

 a=b;

 System.out.println(a.i);

 //System.out.println(a.j);

 }

}

Super Keyword

 Subclass refers to its immediate superclass by using super keyword.

• super has two general forms.

• First it calls the superclass constructor.

• Second is used to access a member of the superclass that has been

hidden by a member of a subclass.

 Using super to call superclass constructors

 super (parameter-list);

• parameter-list specifies any parameters needed by the constructor in the

superclass.

• super() must always be the first statement executed inside a subclass

constructor.

class Box {

 Box() {

 System.out.println("Box() in super class");

 }

 Box(int a){

 System.out.println("Box(int a) in super class");

 }

}

class BoxWeight extends Box {

 BoxWeight(){
 System.out.println("BoxWeight() in sub class");

 }

}

class DemoBoxWeight{

 public static void main(String args[]) {

 BoxWeight mybox1 = new BoxWeight();

 }

}

Output:

Box() in super class

BoxWeight() in sub class

//Using super to call superclass constructors
class Box {

Box() {

 System.out.println("Box() in super class");

 }

 Box(int a){
 System.out.println("Box(int a) in super class");

 }

}

class BoxWeight extends Box {

 BoxWeight(){

 super(10);
 System.out.println("BoxWeight() in sub class");

 }

}

class DemoBoxWeight{

 public static void main(String args[]) {

 BoxWeight mybox1 = new BoxWeight();

 }

}

Output:

Box(int a) in super class

BoxWeight() in sub class

 The second form of super acts somewhat like this, except that it always

refers to the superclass of the subclass in which it is used.

Syntax: super.member

 Here, member can be either a method or an instance variable.

 This second form of super is most applicable to situations in which

member names of a subclass hide members by the same name in the

superclass.

// Using super to overcome name hiding.

class A {

 int i;

}

// Create a subclass by extending class A.

class B extends A {

 int i; // this i hides the i in A

 B(int a, int b) {

 super.i = a; // i in A

 i = b; // i in B

 }

 void show() {

 System.out.println("i in superclass: " + super.i);

 System.out.println("i in subclass: " + i);

 }

}

class UseSuper {

 public static void main(String args[]) {

 B subOb = new B(1, 2);

 subOb.show();

 }

}

This program displays the following:

i in superclass: 1

i in subclass: 2

When Constructors Are Called

 In a class hierarchy, constructors are called in order of derivation, from

superclass to subclass.

 super(…) must be the first statement executed in a subclass’ constructor.
 If super(…) is not used, the default constructor of each superclass will be

executed.

 Implicitly default form of super (super()) will be invoked in each

subclass to call default constructor of superclass.

class A {

 A() {

 System.out.println ("Inside A's constructor.");

 }

 }

class B extends A {

 B() {

 System.out.println("Inside B's constructor.");

 }

 }

class C extends B {

 C() {

 System.out.println("Inside C's constructor.");

 }

}

class CallingCons {

 public static void main(String args[]) {

 C c = new C();

 }

}

Output:

Inside A’s constructor
Inside B’s constructor
Inside C’s constructor

Member access rules

A subclass includes all of the members (default, public, protected) of its

superclass except private members.

class A{

 private int v=10;

 int d=20;

 public int b=30;

 protected int p=40;

}

class B extends A{

 void disp(){

 //System.out.println(“v value : "+v);
 System.out.println(“d value : "+d);
 System.out.println(“b value : "+b);
 System.out.println("p value : "+p);

 }

}

class C extends B{

 void show(){

 System.out.println("p value : "+p);

 }

}

class Protected{

 public static void main(String args[]){

 B b=new B();

 b.disp();

 C c=new C();

 c.show();

 }

}

Output:

d value : 20

b value : 30

p value : 40

p value : 40

Polymorphism

 Assigning multiple meanings to the same method name

 Implemented using late binding or dynamic binding (run-time binding):

 It means, method to be executed is determined at execution time, not at

compile time.

 Polymorphism can be implemented in two ways

 Overloading

 Overriding

 When a method in a subclass has the same name, signature and return

type as a method in its superclass, then the method in the subclass is said

to be overridden the method in the superclass.

 By method overriding, subclass can implement its own behavior.

//Overriding example

class A{

 int i,j;

 A(int a,int b){

 i=a;

 i=b;

 }

 void show(){

 System.out.println(“i and j :”+i+” “+j);

 }

 }

class B extends A{

 int k;

 B(int a, int b, int c){

 super(a,b);

 k=c;

 }

 void show(){

 System.out.println(“k=:”+k);
 }

}

 class Override{

 public static void main(String args[]){

 B subob=new B(3,4,5);

 subob.show();

 }

}

Output:

K: 5

Dynamic Method Dispatch

 Dynamic method dispatch is the mechanism by which a call to an

overridden method is resolved at run time, rather than compile time.

 When an overridden method is called through a superclass reference, the

method to execute will be based upon the type of the object being

referred to at the time the call occurs. Not the type of the reference

variable.

//Dynamic Method Dispatch

class A{

 void callme(){

 System.out.println(“Inside A’s callme method”);
 }

}

class B extends A{

 void callme(){

 System.out.println(“Inside B’s callme method”);
 }

}

class C extends A{

 void callme(){

 System.out.println(“Inside C’s callme method”);
 }

}

 class Dispatch{

public static void main(String args[]){

 A a=new A();

 B b=new B();

 C c=new C();

 A r;

 r=a;

 r.callme();

 r=b;

 r.callme();

 r=c;

 r.callme();

}

}

Output:

Inside A's callme method

Inside B's callme method

Inside C's callme method

// Using run-time polymorphism.

class Figure {

 double dim1;

 double dim2;

 Figure(double a, double b) {

 dim1 = a;

 dim2 = b;

 }

 double area() {

 System.out.println("Area for Figure is undefined.");

 return 0;

 }

}

class Rectangle extends Figure {

 Rectangle(double a, double b) {

 super(a,b);

 }

 // override area for rectangle

 double area() {

 System.out.println("Inside Area for Rectangle.");

 return dim1 * dim2;

 }

}

class Triangle extends Figure {

 Triangle(double a, double b) {

 super(a, b);

 }

 // override area for right triangle

 double area() {

 System.out.println("Inside Area for Triangle.");

 return dim1 * dim2 / 2;

 }

}

class FindAreas {

 public static void main(String args[]) {

 Figure f = new Figure(10, 10);

 Rectangle r = new Rectangle(9, 5);

 Triangle t = new Triangle(10, 8);

 Figure figref;

 figref = r;

 System.out.println("Area is " + figref.area());

 figref = t;

 System.out.println("Area is " + figref.area());

 figref = f;

 System.out.println("Area is " + figref.area());

 }

}
Inside Area for Rectangle.

Area is 45

Inside Area for Triangle.

Area is 40

Area for Figure is undefined.

Area is 0

Abstract Classes

 A method that has been declared but not defined is an abstract method.

 Any class that contains one or more abstract methods must also be declared
abstract.

 You must declare the abstract method with the keyword abstract:
 abstract type name (parameter-list);

 You must declare the class with the keyword abstract:
 abstract class MyClass{

 }

 An abstract class is incomplete, It has “missing” method bodies.

 You cannot instantiate (create a new instance of) an abstract class but you
can create reference to an abstract class.

 Also, you cannot declare abstract constructors, or abstract static methods.

 You can declare a class to be abstract even if it does not contain any
abstract methods. This prevents the class from being instantiated.

 An abstract class can also have concrete methods.

 You can extend (subclass) an abstract class.

• If the subclass defines all the inherited abstract methods, it is “complete”
and can be instantiated.

• If the subclass does not define all the inherited abstract methods, it is also

an abstract class.

// A Simple demonstration of abstract.

abstract class A {

 abstract void callme();

 // concrete methods are still allowed in abstract classes

 void callmetoo() {

 System.out.println("This is a concrete method.");

 }

}

class B extends A {

 void callme() {

 System.out.println("B's implementation of callme.");

 }

}

class AbstractDemo {

 public static void main(String args[]) {

 B b = new B();

 b.callme();

 b.callmetoo();

 }

} Output:

 B's implementation of callme.

 This is a concrete method.

Using final with Inheritance

To create a constant variable:

– A variable can be declared as final. Doing so prevents its contents from being

modified. This means that you must initialize a final variable when it is
declared.

 class FinalDemo{

 public static void main(String sree[]){

 final int i=20;
 System em.out.println(i);

 //i=i+1; can’t assign a value to final variable i
 //System.out.println(i); cannot assign a value to final variable i

 }

 }

The keyword final has three uses:

 To create a constant variable

 To prevent overriding

 To prevent inheritance

To prevent overriding

 To disallow a method from being overridden, specify final as a modifier at
the start of its declaration. Methods declared as final cannot be overridden.

 class A {

 final void meth() {

 System.out.println("This is a final method.");

 }

 }

 class B extends A {

 void meth() { // ERROR! Can't override.

 System.out.println("Illegal!");

 }

 }

To prevent inheritance

 To prevent a class from being inherited precede the class declaration with
 final.

 Declaring a class as final implicitly declares all of its methods as final, too.

 It is illegal to declare a class as both abstract and final since an abstract class

 is incomplete by itself and relies upon its subclasses to provide complete

 implementations.

 final class A {

 // ...

 }

 // The following class is illegal.

 class B extends A { // ERROR! Can't subclass A

 // ...

 }

 Normally, Java resolves calls to methods dynamically, at run time. This

is called late binding.

 However, since final methods cannot be overridden, a call to one can

be resolved at compile time. This is called early binding.

The Object Class

 Object is a special class, defined by Java.

 Object is a superclass of all other classes.

 This means that a reference variable of type Object can refer to an object

of any other class.

 Object defines the following methods:

 Method Purpose

Object clone() Creates a new object that is the same as the

 object being cloned.

boolean equals(Object object) Determines whether one object is equal to

 another.

void finalize() Called before an unused object is recycled.

Class getClass() Obtains the class of an object at run time.

int hashCode() Returns the hash code associated with the

 invoking object.

void notify() Resumes execution of a thread waiting on the

 invoking object.

void notifyAll() Resumes execution of all threads waiting on

 the invoking object.

String toString() Returns a string that describes the object.

void wait() Waits on another thread of execution.

void wait(long milliseconds)

void wait(long milliseconds,

int nanoseconds)

import java.io.*;

import java.util.Scanner;

class CharDemo{

 static char c[]=new char[10];

 public static void main(String sree[])throws Exception{

 //BufferedReader d=new BufferedReader(new InputStreamReader(System.in));

 System.out.println("Enter Characters:");

 for(int i=0;i<10;i++){

 //c[i]=(char)d.read();

 c[i]=(char)System.in.read();

 }

 System.out.println("Entered Characters:");

 for(int i=0;i<10;i++){

 System.out.println(c[i]);

 }

 }

}

 Defining an interface

 Implementing an interface

 Differences between classes and interfaces

 Implements and extends keywords

 An application using an interfaces and uses of interfaces

 Defining Package

 Creating and Accessing a Package

 Types of packages

 Understanding CLASSPATH

 importing packages

It defines a standard and public way of specifying the behavior of classes.

It defines a contract of a class.

Using interface, you can specify what a class must do, but not how it does it.

All methods of an interface are abstract methods. That is it defines the

 signatures of a set of methods, without the body.

A concrete class must implement the interface (all the abstract methods of the

 Interface).

Interface allows classes, regardless of their locations in the class hierarchy, to

 implement common behaviors.

Interface

Once an interface is defined, any number of classes can implement an

 interface.

Also, one class can implement any number of interfaces.

Using the keyword interface, you can fully abstract a class’ interface
 from its implementation.

Using the keyword implements, you can implement any number of

 interfaces.

The methods in interface are abstract by default.

The variables in interface are final by default.

Defining an Interface

An interface is defined much like a class. This is the general form of an interface:

access interface interfacename {

 return-type method-name1(parameter-list);

 return-type method-name2(parameter-list);

 type final-varname1 = value;

 type final-varname2 = value;

 // ...

 return-type method-nameN(parameter-list);

 type final-varnameN = value;

 }

Example:

 interface Callback {

 void callback(int param);

 }

Here, access is either public or not used.

When no access specifier is included, then default access results, and the

interface is only available to other members of the package in which it is declared.

When it is declared as public, the interface can be used by any other code.

‘name’ is the name of the interface, and can be any valid identifier.

Notice that the methods which are declared have no bodies. They are, essentially,

abstract methods.

Variables can be declared inside of interface declarations. They are implicitly final

and static, meaning they cannot be changed by the implementing class.

They must also be initialized with a constant value.

All methods and variables are implicitly public if the interface, itself, is declared

as public.

Implementing Interfaces

Once an interface has been defined, one or more classes can implement that

interface.

To implement an interface, include the implements clause in a class definition,

and then create the methods defined by the interface.

The general form of a class that includes the implements clause looks like this:

access class classname [extends superclass] [implements interface [,interface...]] {

 // class-body

}

 Here, access is either public or not used.

 If a class implements more than one Interface, the interfaces are separated

with a comma.

 If a class implements two interfaces that declare the same method, then the

same method will be used by clients of either interface.

 The methods that implement an interface must be declared public.

 Also, the type signature of the implementing method must match exactly
the type signature specified in the interface definition.

Here is a small example class that implements the Callback interface.

class Client implements Callback {

 // Implement Callback's interface

 public void callback(int p) {

 System.out.println("callback called with " + p);

 }

}

Notice that callback() is declared using the public access specifier.

When you implement an interface method, it must be declared as public.

It is both permissible and common for classes that implement interfaces to define

additional members of their own.

For example, the following version of Client implements callback() and adds

the method nonIfaceMeth():

//Example for a class which contain both interface and non interface methods

 class Client implements Callback {

 // Implement Callback's interface

 public void callback(int p) {

 System.out.println("callback called with " + p);

 }

 void nonIfaceMeth() {

 System.out.println(“Non Interface Method….");
 }

 }

 You can declare variables as object references that use an interface rather than a

 class type.

 Any instance of any class that implements the declared interface can be referred

 to by such a variable.

 When you call a method through one of these references, the correct version

will be called based on the actual instance of the interface being referred to.

 This is one of the key features of interfaces.

 The calling code can dispatch through an interface without having to know

 anything about the “callee.”

Accessing Implementations Through Interface References

The following example calls the callback() via an interface reference variable:

 class TestIface {

 public static void main(String args[]) {

 Callback c = new Client();

 c.callback(42);

 //Callback cb;

 //Client c=new Client();

 //cb=c;

 //cb.callback(42);

 }

 }

 Output:

 callback called with 42

 Notice that variable c is declared to be of the interface type Callback, yet it

was assigned an instance of Client.

 Although c can be used to access the callback() method, it cannot access any

 other members of the Client class.

 An interface reference variable only has knowledge of the methods declared by

its interface declaration.

 Thus, c could not be used to access nonIfaceMeth() since it is defined by

Client but not Callback.

 While the preceding example shows, mechanically, how an interface reference

 variable can access an implementation object, it does not demonstrate the

 polymorphic power of such a reference.

// Another implementation of Callback.

 class AnotherClient implements Callback {

 // Implement Callback's interface

 public void callback(int p) {

 System.out.println("Another version of callback");

 System.out.println("p squared is " + (p*p));

 }

 } class TestIface2 {

 public static void main(String args[]) {

 Callback c = new Client();

 AnotherClient ob = new AnotherClient();

 c.callback(42);

 c = ob; // c now refers to AnotherClient object

 c.callback(42);

 }

}
Output:

callback called with 42

Another version of callback

p squared is 1764

If a class includes an interface but does not fully implement the methods defined by

that interface, then that class must be declared as abstract.

Partial Implementations

 abstract class Incomplete implements Callback {

 int a, b;

 void show() {

 System.out.println(a + " " + b);

 }

 // ...

 }

 If a class includes an interface but does not fully implement the methods defined

 by that interface, then that class must be declared as abstract.

 Here, the class Incomplete does not implement callback() and must be

 declared as abstract.

 Any class that inherits Incomplete must implement callback() or be declared

 abstract itself.

You can define variables in an interface but implicitly they are final variables.

That is you can’t modify them.

Variables in Interfaces

FinalTest.java

class FinalImpl implements FinalDemo{

 public void show(){

 System.out.println("FinalTest :Show()");

 }

}

class FinalTest{

 public static void main(String sree[]){

 FinalImpl fi=new FinalImpl();

 fi.show();

 //fi.i=200; can’t assign a value to variable i
 System.out.println("FinalDemo Varaible i :"+fi.i);

 }

}

FinalDemo.java

interface FinalDemo{

 int i=100;

 void show();

}

Output:

 FinalTest :Show()

 FinalDemo Varaible i :100

One interface can inherit another by use of the keyword extends.

The syntax is the same as for inheriting classes.

When a class implements an interface that inherits another interface, it must

provide implementations for all methods defined within the interface inheritance

chain.

Interfaces Can Be Extended

// One interface can extend another.

interface A {

 void meth1();

 void meth2();

}

// B now includes meth1() and meth2() -- it adds meth3().

interface B extends A {

 void meth3();

}

// This class must implement all of A and B

class MyClass implements B {

 public void meth1() {

 System.out.println("Implement meth1().");

}

 public void meth2() {

 System.out.println("Implement meth2().");

 }

 public void meth3() {

 System.out.println("Implement meth3().");

 }

}

class IFExtend {

 public static void main(String arg[]) {

 MyClass ob = new MyClass();

 ob.meth1();

 ob.meth2();

 ob.meth3();

 }

} Output:

 Implement meth1().

 Implement meth2().

 Implement meth3().

interface Callback {

 void callback(int param);

}

 class Client implements Callback {

 // Implement Callback's interface

 public void callback(int p) {

 System.out.println("callback called with " + p);

 }

 void nonIfaceMeth() {

 System.out.println(“NonInterface

Method….");
 }

}

// Another implementation of Callback.

class AnotherClient implements Callback {

 // Implement Callback's interface

 public void callback(int p) {
 System.out.println("Another version of callback");

 System.out.println("p squared is " + (p*p));

 }

}

class TestIface2 {

 public static void main(String args[]) {

 Callback c = new Client();

 AnotherClient ob = new AnotherClient();

 c.callback(42);

 c = ob; // c now refers to AnotherClient object

 c.callback(42);

} }

Output:

 callback called with 42

 Another version of callback

 p squared is 1764

Class Vs Interface

 The methods of an Interface are all abstract methods. They cannot have bodies.

 An interface can only define constants.

 You cannot create an instance from an interface.

 An interface can only be implemented by classes or extended by other

interfaces.

 Interfaces have no direct inherited relationship with any particular class, they

are defined independently.

 Interfaces themselves have inheritance relationship among themselves.

 A class can implement more than one interface. By contrast, a class can only

inherit a single superclass (abstract or otherwise).

Abstract Class Vs Interface

 An abstract class is written when there are some common features shared by all

the objects.

 An interface is written when all the features are implement differently in

different objects.

 When an abstract class is written, it is the duty of the programmer to provide

sub classes to it.

 An interface is written when the programmer wants to leave the implementation

to the third party vendors.

 An abstract class contains some abstract methods and also some concrete

methods.

 An interface contains only abstract methods.

 An abstract class can contain instance variables also.

 An interface can not contain instance variables. It contains only constants.

 All the abstract methods of the abstract class should be implemented in its sub

classes.

 All the (abstract) methods of the interface should be implemented in its

implementation classes.

 Abstract class is declared by using the keyword abstract.

 Interface is declared using the keyword interface.

 An abstract class can only inherit a single super class (abstract or otherwise).

 A class can implement more than one interface.

 Interfaces have no direct inherited relationship with any particular class, they are

defined independently. Interfaces themselves have inheritance relationship

among themselves.

 An abstract methods of abstract class have abstract modifier.

 A method of interface is an abstract method by default.

Uses of Interface

 To reveal an object's programming interface (functionality of the object)

without revealing its implementation.

 – This is the concept of encapsulation.

 – The implementation can change without affecting the caller of the

 interface.

 To have unrelated classes implement similar methods (behaviors).

 – One class is not a sub-class of another.

 To model multiple inheritance.

 – A class can implement multiple interfaces while it can extend only one

 class.

Packages

Java provides a mechanism for partitioning the class name space into more

manageable chunks. This mechanism is the package.

The package is both a naming and a visibility control mechanism.

A package represents a directory that contains related group of classes and

interfaces.

You can define classes inside a package that are not accessible by code outside that

package.

You can also define class members that are only exposed to other members of the

same package.

Pre-defined packages

1. java.applet 11. java.text

2. java.awt 12. java.util

3. java.beans 13. java.util.zip

4. java.io 14.javax.sql

5. java.lang 15.javax.swing

6. java.lang.ref

7. java.math

8. java.net

9. java.nio

10. java.sql

To create a package is quite easy: simply include a package command as the first

statement in a Java source file.

Any classes declared within that file will belong to the specified package.

The package statement defines a name space in which classes are stored.

If you omit the package statement, the class names are put into the default

package, which has no name.

This is the general form of the package statement:

 Syntax: package pkg;

 Example: package MyPackage;

Java uses file system directories to store packages.

Defining a Packages

More than one file can include the same package statement.

You can create a hierarchy of packages.

To do so, simply separate each package name from the one above it by use of a

period.

The general form of a multileveled package statement is shown here:

 package pkg1[.pkg2[.pkg3]];

A package hierarchy must be reflected in the file system of your Java development

system.

For example, a package declared as package java.awt.image; needs to be stored in

java\awt\image on your Windows.

How does the Java run-time system know where to look for packages that you

create?

The answer has two parts:

First, by default, the Java run-time system uses the current working directory as its

starting point. Thus, if your package is in the current directory, or a subdirectory of

the current directory, it will be found.

Second, you can specify a directory path or paths by setting the CLASSPATH

environmental variable.

For example, consider the following package specification.

 package MyPack;

In order for a program to find MyPack, one of two things must be true.

Either the program is executed from a directory immediately above MyPack, or

CLASSPATH must be set to include the path to MyPack.

Finding Packages and CLASSPATH

// A simple package

package MyPack;

class Balance {

 String name;

 double bal;

 Balance(String n, double b){

 name = n;

 bal = b;

 }

 void show() {

 if(bal<0)

 System.out.print("--> ");

 System.out.println(name + ": $" + bal);

 }

}

//AccountBalance.java
class AccountBalance {

 public static void main(String args[]) {

 Balance current[] = new Balance[3];

 current[0] = new Balance("K. J. Fielding", 123.23);

 current[1] = new Balance("Will Tell", 157.02);

 current[2] = new Balance("Tom Jackson", -12.33);

 for(int i=0; i<3; i++)

 current[i].show();

 }

}

//To compile

javac AccountBalance.java

//To run

java MyPack.AccountBalance

//java AccountBalance invalid

Access Control

Java addresses four categories of visibility for class members:

 Subclasses in the same package.

 Non-subclasses in the same package.

 Subclasses in different packages.

 Classes that are neither in the same package nor subclasses.

A class has only two possible access levels: default and public.

Class Member Access

//VarProtection.java

 package pack1;

 public class VarProtection {

 int n = 1;

 private int pri = 2;

 protected int pro = 3;

 public int pub = 4;

 public VarProtection() {

 System.out.println("Individual class constructor");

 System.out.println("default value is: " + n);

 System.out.println("private value is: " + pri);

 System.out.println("protected value is: " + pro);

 System.out.println("public value is: " + pub);

 }

}

To Compile:

 d:\>javac –d . VarProtection.java

//SameSub .java:

package pack1;

class SameSub extends VarProtection{

 SameSub(){

 System.out.println("subclass constructor");

 System.out.println("default value is: " + n);

 // System.out.println("private value is: " + pri);

 System.out.println("protected value is: " + pro);

 System.out.println("public value is: " + pub);

 }

}

To Compile:

 d:\>javac –d . SameSub.java

// SameDiff.java

package pack1;

class SameDiff{

 SameDiff(){

 VarProtection v1 = new VarProtection();

 System.out.println("Delegationclass constructor");

 System.out.println("default value is: " +v1. n);

 // System.out.println("private value is: " +v1. pri);

 System.out.println("protected value is: " +v1. pro);

 System.out.println("public value is: " + v1.pub);

 }

}

To Compile:

 d:\>javac –d . SameDiff.java

//OtherSub.java

package pack2;

import pack1.*;

class OtherSub extends VarProtection{

 OtherSub(){

 System.out.println("Different Package subclass constructor");

 //System.out.println("default value is: " + n);

 // System.out.println("private value is: " + pri);

 System.out.println("protected value is: " + pro);

 System.out.println("public value is: " + pub);

 }

}

To Compile:

 d:\>javac –d . OtherSub.java

// OtherDiff.java

package pack2;

import pack1.*;

class OtherDiff{

 OtherDiff(){

 VarProtection v2=new VarProtection();

 System.out.println("Different Package non-subclass constructor");

 // System.out.println("default value is: " +v2. n);

 // System.out.println("private value is: " + v2.pri);

 // System.out.println("protected value is: " + v2.pro);

 System.out.println("public value is: " + v2.pub);

 }

}

To Compile:

 d:\>javac –d . OtherDiff.java

// Demo package p1.

package pack1;

class MainTest{

 public static void main(String args[]){

 VarProtection v=new VarProtection();

 SameDiff s2=new SameDiff();

 SameSub s1=new SameSub();

 }

}

package pack2;

import pack1.*;

class OtherMainTest{

 public static void main(String args[]){

 OtherSub os=new OtherSub();

 OtherDiff od=new OtherDiff();

 }

}

To Compile:

 d:\>javac –d . MainTest.java

To Run:

 d:\>java pack1.MainTest

To Compile:

 d:\>javac –d . OtherMainTest.java

To Run:

 d:\>java pack2.OtherMainTest

Importing Packages

There are no core Java classes in the unnamed default package; all of the standard

classes are stored in some named package.

Java includes the import statement to bring certain classes, or entire packages,

into visibility.

Once imported, a class can be referred to directly, using only its name.

In a Java source file, import statements occur immediately following the

package statement (if it exists) and before any class definitions.

This is the general form of the import statement:

 import pkg1[.pkg2].(classname|*);

Here, pkg1 is the name of a top-level package, and pkg2 is the name of a

subordinate package inside the outer package separated by a dot (.).

There is no practical limit on the depth of a package hierarchy, except that

imposed by the file system.

Finally, you specify either an explicit classname or a star (*), which indicates that

the Java compiler should import the entire package.

This code fragment shows both forms in use:

 import java.util.Date;

 import java.io.*;

All of the standard Java classes included with Java are stored in a package called

java.

The basic language functions are stored in a package inside of the java package

called java.lang.

Normally, you have to import every package or class that you want to use, but

java.lang is implicitly imported by the compiler for all programs.

This is equivalent to the following line being at the top of all of your programs:

 import java.lang.*;

When a package is imported, only those items within the package declared as public will

be available to non-subclasses in the importing code. For example, if you want the

Balance class of the package MyPack shown earlier to be available as a stand-alone

class for general use outside of MyPack, then you will need to declare it as public and

put it into its own file, as shown here:

 package MyPack;

 public class Balance {

 String name;

 double bal;

 public Balance(String n, double b) {

 name = n;

 bal = b;

 }

 public void show() {

 if(bal<0)

 System.out.print("--> ");

 System.out.println(name + ": $" + bal);

 }

 }

 import MyPack.*;

 class TestBalance {

 public static void main(String args[]) {

 /* Because Balance is public, you may use Balance

 class and call its constructor. */

 Balance test = new Balance("J. J. Jaspers", 99.88);

 test.show(); // you may also call show()

 }

 }

As an experiment, remove the public specifier from the Balance class and then

try compiling TestBalance. As explained, errors will result.

