
UNIT-1

 JAVA BASICS

 History of Java

 Java buzzwords

 Data types

 Variables

 Simple java program

 scope and life time of variables

 Operators, expressions, control statements

 Type conversion and casting

 Arrays

 Classes and objects – concepts of classes, objects

 Constructors, methods

 Access control

 This keyword

 Garbage collection

 Overloading methods and constructors

 Parameter passing

 Recursion

 String handling .

UNIT-I

History of Java

 Java started out as a research project.

 Research began in 1991 as the Green Project at Sun

Microsystems, Inc.

 Research efforts birthed a new language, OAK. (A tree outside

of the window of James Gosling’s office at Sun).

 It was developed as an embedded programming language, which

would enable embedded system application.

 It was not really created as web programming language.

 Java is available as jdk and it is an open source s/w.

History of Java (contd…)

Language was created with 5 main goals:

 It should be object oriented.

 A single representation of a program could be executed on

 multiple operating systems. (i.e. write once, run anywhere)

 It should fully support network programming.

 It should execute code from remote sources securely.

 It should be easy to use.

 Oak was renamed Java in 1994.

 Now Sun Microsystems is a subsidiary of Oracle
Corporation.

 James Gosling

Green Team

Java Logo

Versions of Java

Version Codename Year Features Added

JDK 1.0 Oak Jan23,1996 -

JDK 1.1
Rebirth of

Java
Feb19,1997

Inner classes JavaBeans, JDBC, RMI, Reflection, AWT.

J2SE 1.2 Playground Dec8, 1998
JIT compiler, Collections, IDL & CORBA, strictfp, Java

Plug-in.

J2SE 1.3 Kestrel May8, 2000
HotSpot JVM, JavaSound, Java Naming and Directory

Interface, Java Platform Debugger Architecture.

J2SE 1.4 Merlin Feb6, 2002
Preferences API, Logging API, assert, image I/O API,

security and cryptography extensions.

J2SE 5.0 Tiger Sep30, 2004
Generics, annotations, Autoboxing, Enumerations, Varargs,

Enhanced for each.

JAVA SE 6 Mustang Dec11, 2006
JDBC 4.0, JVM improvements, Improved JAXB, Improved

web services, Support for older Win9x versions dropped.

JAVA SE 7

Dolphin July28, 2011

Major updates to Java

JAVA SE 8 - 2012 -

Java Platforms

There are three main platforms for Java:

 Java SE (Java Platform, Standard Edition) – runs on desktops

and laptops.

 Java ME (Java Platform, Micro Edition) – runs on mobile

devices such as cell phones.

 Java EE (Java Platform, Enterprise Edition) – runs on servers.

Java Development Kit:

It contains one (or more) JRE's along with the various

development tools like the Java source compilers, bundling and

deployment tools, debuggers, development libraries, etc.

Java Virtual Machine:

An abstract machine architecture specified by the Java Virtual

Machine Specification.

It interprets the byte code into the machine code depending

upon the underlying OS and hardware combination. JVM is

platform dependent. (It uses the class libraries, and other

supporting files provided in JRE)

Java Terminology

Java Runtime Environment:

 A runtime environment which implements Java Virtual

Machine, and provides all class libraries and other

facilities necessary to execute Java programs. This is the

software on your computer that actually runs Java

programs.

 JRE = JVM + Java Packages Classes (like util, math,

lang, awt, swing etc) +runtime libraries.

Java Terminology (contd…)

W

Java

Source

Java

Byte codes

Java

Byte

codes

move

locally

or

through

n/w

Java

Compiler

Class Loader

Byte Code

Verifier

Java Class

 Libraries

Java

Interpreter

Just-in-time

Compiler

Run Time System

Java OS Win 32 Solaris

 MAC Others

 Hardware

Java Execution Procedure

The Architecture of the Java Virtual Machine

Java Virtual Machine

 Class loader subsystem: A mechanism for loading
types (classes and interfaces) given fully qualified
names.

 The Java virtual machine organizes the memory it
needs to execute a program into several runtime data
areas.

 Each Java virtual machine also has an execution
engine: a mechanism responsible for executing the
instructions contained in the methods of loaded
classes.

Class loader subsystem

 The Java virtual machine contains two kinds of class loaders: a

bootstrap class loader and user-defined class loaders.

 The bootstrap class loader is a part of the virtual machine

implementation, and user-defined class loaders are part of the running

Java application.

 Loading: finding and importing the binary data for a type

 Linking: performing verification, preparation, and (optionally)

resolution

 Verification: ensuring the correctness of the imported type

 Preparation: allocating memory for class variables and initializing the

memory to default values

 Resolution: transforming symbolic references from the type into

direct references.

 Initialization: invoking Java code that initializes class variables to their

proper starting values.

When the virtual machine loads a class file, it parses information about

a type from the binary data contained in the class file.

It places this type information into the method area.

As the program runs, the virtual machine places all objects the

program instantiates onto the heap.

As each new thread comes into existence, it gets its own pc register

(program counter) and Java stack.

Byte code is a highly optimized set of instructions designed to be

executed by the Java run-time system, which is called the Java

Virtual Machine (JVM).The JVM is an interpreter for byte code.

Binary form of a .class file(partial)
 public class Hello

 {

 public static void main(String[] args)

 {

 System.out.println("Hello, World!");

 }

 }

 0000: cafe babe 0000 002e 001a 0a00 0600 0c09

 0010: 000d 000e 0800 0f0a 0010 0011 0700 1207

 0020: 0013 0100 063c 696e 6974 3e01 0003 2829<init>...()

 0030: 5601 0004 436f 6465 0100 046d 6169 6e01 V...Code...main.

 0040: 0016 285b 4c6a 6176 612f 6c61 6e67 2f53 ..([Ljava/lang/S

 0050: 7472 696e 673b 2956 0c00 0700 0807 0014 tring;)V........

 0060: 0c00 1500 1601 000d 4865 6c6c 6f2c 2057Hello, W

 0070: 6f72 6c64 2107 0017 0c00 1800 1901 0005 orld!...........

 0080: 4865 6c6c 6f01 0010 6a61 7661 2f6c 616e Hello...java/lan

 0090: 672f 4f62 6a65 6374 0100 106a 6176 612f g/Object...java/

 00a0: 6c61 6e67 2f53 7973 7465 6d01 0003 6f75 lang/System...ou ...

Object Oriented Programming Concepts

Objects

Classes

Data abstraction and Encapsulation

Inheritance

Polymorphism

Dynamic Binding

A class is collection of objects of similar type or it is a template.

 Ex: fruit mango;

Objects are instances of the type class.

The wrapping up of data and functions into a single unit (called class) is known

as encapsulation. Data encapsulation is the most striking features of a class.

Abstraction refers to the act of representing essential features without including

the background details or explanations

Inheritance is the process by which objects of one class acquire the properties

of another class. The concept of inheritance provides the reusability.

class object

Polymorphism:

It allows the single method to perform different actions based on the

parameters.

Dynamic Binding: When a method is called within a program, it

associated with the program at run time rather than at compile time is

called dynamic binding.

Object-Oriented Languages Types

1.Object-based programming language: It supports

 Data encapsulation

 Data hiding and access mechanisms

 Automatic initialization and clear-up of objects

 Operator overloading

Disadvantage : They do not support inheritance and dynamic binding

Ex: Ada

2.Object-oriented programming languages:

 OOP = Object-based + inheritance + dynamic binding

Ex: C++, Java, Smalltalk, Object Pascal

Benefits of OOP

Through inheritance, we can eliminate redundant code and extend the use of

existing classes.

The principle of data hiding helps the programmer to build secure programs.

It is easy to partition the work in a project based on objects.

Object oriented system easily upgraded from small to large systems.

Software complexity can be easily managed.

Applications of oop

 Real-time systems

 Object-oriented databases

 Neural networks and parallel programming

 Decision support and office automation systems

 CAD/CAM systems

What is the Difference b/w OO and OB Languages?

 In Object based languages inheritance is not supported so

that dynamic polymorphism also not supported.

 E.g. VB,VC++.

 Is C++ partial OOP?

 Yes, C++ is a partial OOP because without using class also

we can able to write the program.

 Is Java total OOP or partial OOP?

 Java is a total oop language because with out object

orientation we can’t able to write any program.

 Java is a pure oop or not ?

 By default java is not pure object oriented language.

 Java is called as Hybrid language.

 Pure oop languages are “small talk”, ”ruby”, “Eiffel”.

Differences b/w C++ and Java

 C++ Java

1. Global variable are 1. No Global variables.

 supported. Everything must be inside

 the class only.

2.Multiple inheritance 2. No direct multiple

 is supported. Inheritance.

 C++ Java

3.Constructors and 3.Java supporting constructors

 Destructors supported. only & instead of destructors

 garbage collection is

 supported.

4.In c++ pointers are 4.No pointer arithmetic in Java.

 supported.

5.C++ supporting ASCII 5. Java supports Uni code

 character set. Character set.

 Features of Java (Java Buzz Words)

Simple

Object Oriented

Compile, Interpreted and High Performance

Portable

Reliable

Secure

Multithreaded

Dynamic

Distributed

Architecture-Neutral

 Java Features

 Simple

 No pointers

 Automatic garbage collection

 Rich pre-defined class library

 Object Oriented

 Focus on the data (objects) and methods manipulating the data

 All methods are associated with objects

 Potentially better code organization and reuse

 Compile, Interpreted and High Performance

 Java compiler generate byte-codes, not native machine code

 The compiled byte-codes are platform-independent

 Java byte codes are translated on the fly to machine

readable instructions in runtime (Java Virtual Machine)

 Easy to translate directly into native machine code by using a

just-in-time compiler.

 Portable

 Same application runs on all platforms

 The sizes of the primitive data types are always the same

 The libraries define portable interfaces

 Java Features

 Java Features

 Reliable/Robust

 Extensive compile-time and runtime error checking

 No pointers but real arrays. Memory corruptions or

unauthorized memory accesses are impossible

 Automatic garbage collection tracks objects usage over

time

 Secure

 Java’s robustness features makes java secure.

 Access restrictions are forced (private, public)

 Java Features

 Multithreaded

 It supports multithreaded programming.

 Need not wait for the application to finish one task before

beginning another one.

 Dynamic

 Libraries can freely add new methods and instance

variables without any effect on their clients

 Interfaces promote flexibility and reusability in code by

specifying a set of methods an object can perform, but

leaves open how these methods should be implemented .

Java Features

 Distributed

 Java is designed for the distributed environment of the

Internet, because it handles TCP/IP protocols.

 Allows objects on two different computers to execute

procedures remotely by using package called Remote

Method Invocation (RMI).

 Architecture-Neutral

 Goal of java designers is “write once; run anywhere,
any time, forever.”

Keywords

 abstract continue goto package synchronized

 assert default if private this

 boolean do implements protected throw

 break double import public throws

 byte else instanceOf return transient

 case extends int short try

 catch final interface static void

 char finally long strictfp volatile

 class float native super while

 const for new switch

 Data Types

Simple Type Derived Type User Defined Type

Numeric Type Non-Numeric class Interface

Integer Float Char Boolean

float double

byte short int long

E.g: Array, String…

Data Types

 Java Is a Strongly Typed Language
 Every variable has a type, every expression has a type, and every type is

strictly defined.

 All assignments, whether explicit or via parameter passing in method calls,

are checked for type compatibility.

 There are no automatic conversions of conflicting types as in some

languages.

 For example, in C/C++ you can assign a floating-point value to an

integer. In Java, you cannot.

Integer Data Types
 Java does not support unsigned, positive-only integers.
 All are signed, positive and negative values.

Byte Data Type
 The smallest integer type is byte.

 Variables of type byte are especially useful while working with a stream of data

from a network or file.

 Byte variables are declared by use of the byte keyword.

Ex: byte b, c;

Floating Point Types

There are two kinds of floating-point types.

All math functions, such as sin(), cos(), and sqrt(), return double

values.

Boolean Data Type

 It can have only one of two possible values, true or false.

This is the type, returned by all relational operators, such as a < b.

Character Data Type

 char in Java is not the same as char in C or C++.

 Java uses Unicode to represent characters.

 Unicode defines a fully international character set that can represent all of the

characters found in all human languages.

 It is a unification of dozens of character sets, such as Latin, Greek, Arabic,

Cyrillic, Hebrew, Katakana, Hangul, and many more.

 Hence it requires 16 bits.

 The range of a char in java is 0 to 65,536.

 There are no negative chars.

Data Types

 Name Width in bits Range

 long 64 –9,223,372,036,854,775,808 to

 9,223,372,036,854,775,807

 int 32 –2,147,483,648 to 2,147,483,647

 short 16 –32,768 to 32,767

 byte 8 –128 to 127

 double 64 4.9e–324 to 1.8e+308

 float 32 1.4e−045 to 3.4e+038

 char 16 0 to 65,536.

public class IntDemo{

 public static void main(String args[]){

 System.out.println(" For an Integer ");

 System.out.println("Size is : "+Integer.SIZE);

 int i1 = Integer.MAX_VALUE;

 int i2 = Integer.MIN_VALUE ;

 System.out.println("Max value is : "+i1);

 System.out.println("Min Value is : "+i2);

 System.out.println(" For an Byte");

 System.out.println("Size is : "+Byte.SIZE);

 byte b1 = Byte.MAX_VALUE;

 byte b2 = Byte.MIN_VALUE ;

 System.out.println("Max value is : "+b1);

 System.out.println("Min Value is : "+b2);

 System.out.println(" For an Short");

 System.out.println("Size is : "+Short.SIZE);

 short s1 = Short.MAX_VALUE;

 short s2 = Short.MIN_VALUE ;

 System.out.println("Max value is : "+s1);

 System.out.println("Min Value is : "+s2);

 System.out.println(" For an Long");

 System.out.println("Size is : "+Long.SIZE);

 long l1 = Long.MAX_VALUE;

 long l2 = Long.MIN_VALUE ;

 System.out.println("Max value is : "+l1);

 System.out.println("Min Value is : "+l2);

 }

 }

public class FloatDemo{

 public static void main(String args[]){

 System.out.println(" For an Float");

 System.out.println("Size is : "+Float.SIZE);

 float f1 = Float.MAX_VALUE;

 float f2 = Float.MIN_VALUE ;

 System.out.println("Max value is : "+f1);

 System.out.println("Min Value is : "+f2);

 System.out.println(" For an Double");

 System.out.println("Size is : "+Double.SIZE);

 double d1 = Double.MAX_VALUE;

 double d2 = Double.MIN_VALUE ;

 System.out.println("Max value is : "+d1);

 System.out.println("Min Value is : "+d2);

 }

}

public class CharDemo{

 public static void main(String args[]){

 System.out.println(" For a Char");

 System.out.println("Size is : "+Character.SIZE);

 int f1 = Character.MAX_VALUE;

 long f2 = Character.MIN_VALUE ;

 System.out.println("Max value is : "+f1);

 System.out.println("Min Value is : "+f2);

 }

}

Variables

 The variable is the basic unit of storage in a Java program.

 A variable is defined by the combination of an identifier, a type, and an

optional initializer.

 Declaring a Variable

 In Java, all variables must be declared before they can be used.

type identifier [= value][, identifier [= value] ...] ;

Types

 Instance Variable

 Class Variable

 Local Variable

 Parameters

Local variables :

• Local variables are declared in methods, constructors, or blocks.

• Local variables are created when the method, constructor or block

is entered and the variable will be destroyed once it exits the

method, constructor or block.

• Access modifiers cannot be used for local variables.

• Local variables are visible only within the declared method,

constructor or block.

• There is no default value for local variables so local variables

should be declared and an initial value should be assigned before

the first use.

Instance variables :

• Instance variables are declared in a class, but outside a method,

constructor or any block.

• Instance variables are created when an object is created with the use of

the key word 'new' and destroyed when the object is destroyed.

• Access modifiers can be given for instance variables.

• The instance variables are visible for all methods, constructors and block

in the class.

• Instance variables have default values.

• Instance variables can be accessed directly by calling the variable name

inside the class.

• However within static methods and different class (when instance

variables are given accessibility) that should be called using the fully

qualified name ObjectReference.VariableName

Class/Static variables :

• Class variables also known as static variables are declared with the static

keyword in a class, but outside a method, constructor or a block.

• There would only be one copy of each class variable per class,

regardless of how many objects are created from it.

• Static variables are stored in static memory.

• Static variables are created when the program starts and destroyed when

the program stops.

• Visibility is similar to instance variables.

• Default values are same as instance variables.

• Static variables can be accessed by calling with the class name

ClassName.VariableName

class Variables{

 int i;

 public int j

 static long l=10;

 public static float f;

 char c;

 boolean b;

 void display(int a){

 i=a;

 System.out.println("i value in display: "+i);

 }

 public static void main(String args[]){

 double d=0.0;

 //public double d=0.0; invalid

 Variables v1=new Variables();

 Variables v2=new Variables();

 Variables v3=new Variables();

 v1.display(100);

 v1.i=2;

 v2.i=3;

 v3.i=4;

 System.out.println("i value is: "+v1.i);

 System.out.println("i value is: "+v2.i);

 System.out.println("i value is: "+v3.i);

 System.out.println("i value is: "+v1.j);

 v1.l=20;

 v2.l=30;

 v3.l=40;

 System.out.println("l value is: "+v1.l);

 System.out.println("l value is: "+v2.l);

 System.out.println("l value is: "+v3.l);

 System.out.println("f value is: "+f);

 System.out.println("c value is: "+v1.c);

 System.out.println("b value is: "+v1.b);

 System.out.println("d value is: "+d);

 }

 }

class Variables{

 int i;//instance variable

 public int j ;//instance variable

 static long l=10;//class variable

 public static float f;//class variable

 char c;//instance variable

 boolean b;//instance variable

 void display(int a){

 i=a;

 System.out.println("i value in display: "+i);

 }

 public static void main(String args[]){

 double d=0.0;//local varible

 //public double d=0.0; invalid

 Variables v1=new Variables();

 Variables v2=new Variables();

 Variables v3=new Variables();

 v1.display(100);

 v1.i=2;

 v2.i=3;

 v3.i=4;

 System.out.println("i value is: "+v1.i);

 System.out.println("i value is: "+v2.i);

 System.out.println("i value is: "+v3.i);

 System.out.println("i value is: "+v1.j);

 v1.l=20;

 v2.l=30;

 v3.l=40;

 System.out.println("l value is: "+v1.l);

 System.out.println("l value is: "+v2.l);

 System.out.println("l value is: "+v3.l);

 System.out.println("f value is: "+f);

 System.out.println("c value is: "+v1.c);

 System.out.println("b value is: "+v1.b);

 System.out.println("d value is: "+d);

 }

 }

Sample Program

class HelloWorld {

 public static void main (String args []) {

 System.out.println (“Welcome to Java Programming…..”);

 }

}

public allows the program to control the visibility of class

members. When a class member is preceded by public, then that

member may be accessed by code outside the class in which it is

declared. In this case, main () must be declared as public, since it

must be called by code outside of its class when the program is

started.

static allows main() to be called without having to instantiate a

particular instance of the class. This is necessary since main () is

called by the Java interpreter before any objects are made.

void states that the main method will not return any value.

main() is called when a Java application begins. In order to run

a class, the class must have a main method.

string args[] declares a parameter named args, which is an array of

String. In this case, args receives any command-line arguments

present when the program is executed.

System is a class which is present in java.lang package.

out is a static field present in system class which returns a

PrintStream object. As out is a static field it can call directly with

classname.

println() is a method which present in PrintStream class which

can call through the PrintStream object return by static field out

present in System class to print a line to console.

class sample{

 public static void main(String args[]){

 System.out.println("sample:main");

 sample s=new sample();

 s.display();

 }

 void display(){

 System.out.println("display:main");

 }

}

The Scope and Lifetime of Variables

Scope

 The scope of a declared element is the portion of the program where the
element is visible.

Lifetime

 The lifetime of a declared element is the period of time during which it is
alive.

 The lifetime of the variable can be determined by looking at the context in
which they're defined.

 Java allows variables to be declared within any block.

 A block begins with an opening curly brace and ends by a closing curly
brace.

 Variables declared inside a scope are not accessible to code

outside.

 Scopes can be nested. The outer scope encloses the inner

scope.

 Variables declared in the outer scope are visible to the inner

scope.

 Variables declared in the inner scope are not visible to the

outside scope.

public class Scope

{

 public static void main(String args[]){

 int x; //know to all code within main

 x=10;

 if(x==10){ // starts new scope

 int y=20; //Known only to this block

 //x and y both known here

 System.out.println("x and y: "+x+" "+y);

 x=y+2;

 }

 // y=100; // error ! y not known here

 //x is still known here

 System.out.println("x is "+x);

 }

}

Operators

 Arithmetic Operators

 Bitwise Operators

 Relational Operators

 Boolean Logical Operators

Arithmetic Operators(1)

 Operator Result

 + Addition

 – Subtraction

 * Multiplication

 / Division

 % Modulus

Arithmetic Operators(2)

 Operator Result

 ++ Increment

 += Addition assignment

 – = Subtraction assignment

 *= Multiplication assignment

 /= Division assignment

 %= Modulus assignment

 – – Decrement

Example:

class IncDec{

 public static void main(String args[]){

 int a = 1;

 int b = 2;

 int c,d;

 c = ++b;

 d = a++;

 c++;

 System.out.println("a = " + a);

 System.out.println("b = " + b);

 System.out.println("c = " + c);

 System.out.println("d = " + d);

 }

}

class OpEquals{

 public static void main(String args[]){

 int a = 1;

 int b = 2;

 int c = 3;

 a += 5;

 b *= 4;

 c += a * b;

 c %= 6;

 System.out.println("a = " + a);

 System.out.println("b = " + b);

 System.out.println("c = " + c);

 }

}

Bitwise Operators(1)

 bitwise operators can be applied to the integer types,
long, int, short, byte and char.

 These operators act upon the individual bits of their
operands.

 Operator Result

 ~ Bitwise unary NOT
 & Bitwise AND
 | Bitwise OR
 ^ Bitwise exclusive OR
 >> Shift right
 >>> Shift right zero fill
 << Shift left

Bitwise Operators(2)

 Operator Result

 &= Bitwise AND assignment

 |= Bitwise OR assignment

 ^= Bitwise exclusive OR assignment

 >>= Shift right assignment

 >>>= Shift right zero fill assignment

 <<= Shift left assignment

 00101010 42

&00001111 15

 00001010 10

 00101010 42

^00001111 15

 00100101 37

int a = 32;

a = a >> 2; 8

int a = 64;

a = a << 2; 256

11111000 –8

>>1

11111100 –4

11111111 11111111 11111111 11111111 –1

>>>24

00000000 00000000 00000000 11111111 255

Relational Operators

 The relational operators determine the relationship that

one operand has to the other.

 They determine equality and ordering.

 Operator Result

 == Equal to

 != Not equal to

 > Greater than

 < Less than

 >= Greater than or equal to

 <= Less than or equal to

Example:

 public class RelationalOperatorsDemo

 {

 public static void main(String args[])

 {

 int x=10,y=5;

 System.out.println(“x>y:”+(x>y));

 System.out.println(“x<y:”+(x<y));

 System.out.println(“x>=y:”+(x>=y));

 System.out.println(“x<=y:”+(x<=y));

 System.out.println(“x==y:”+(x==y));

 System.out.println(“x!=y:”+(x!=y));

 }

}

Boolean Logical Operators(1)

 The Boolean logical operators operate only on boolean operands.

 All of the binary logical operators combine two boolean values to

form a resultant boolean value.

 Operator Result

 & Logical AND

 | Logical OR

 ^ Logical XOR (exclusive OR)

 || Short-circuit OR

 && Short-circuit AND

 ! Logical unary NOT

& //executes both left and right side operands

&& // Java will not bother to evaluate the right-hand

operand when the outcome of the expression can be

determined by the left operand alone.

class Test{

 public static void main(String args[]){

 int denom=0,num=20;

 if (denom != 0 && num / denom > 10)

 System.out.println("Hi");

 }

}

Boolean Logical Operators(2)

 Operator Result

 &= AND assignment

 |= OR assignment

 ^= XOR assignment

 == Equal to

 != Not equal to

 ?: Ternary if-then-else

 public class TernaryOperatorDemo

 {

 public static void main(String args[])

 {

 int x=10,y=12;

 int z;

 z= x > y ? x : y;

 System.out.println(“Z=“+z);

 }

Operator Precedence

Expressions

 An expression is a combination of constants (like 10),

operators (like +), variables(section of memory) and

parentheses (like “(” and “)”) used to calculate a value.

 Ex1: x = 1;

 Ex2: y = 100 + x;

 Ex3: x = (32 - y) / (x + 5)

Control Statements

 Selection Statements: if & switch

 Iteration Statements: for, while and do-while

 Jump Statements: break, continue and return

Selection Statements

 if (condition)

 statement1;

 else

 statement2;

 if(condition)

 statement;

 else if(condition)

 statement;

 else if(condition)

 statement;

 ...

 else

 statement;

 switch (expression)

 {

 case value1:

 // statement sequence

 break;

 case value2:

 // statement sequence

 break;

 …

 case valueN:

 // statement sequence

 break;

 default:

 // default statement sequence

 }

The condition is any expression that returns a boolean value.

 The expression must be of type byte, short, int, or char;
Each of the values specified in the case statements must be of a type

compatible with the expression.

Iteration Statements

 while(condition)

 {

 // body of loop

 }

 do

 {

 // body of loop

 } while (condition);

 for(initialization; condition; iteration)

 {

 // body

 }

Jump Statements

break; //exit from the loop

continue; //bypass the followed instructions

return; //control returns to the caller

label:

- - - -

- - - -

break label; //it’s like goto

statement

Type Conversion and Casting

 Type conversion, typecasting, refers to different ways

of, implicitly or explicitly, changing an entity of one data type

into another.

 Types of Conversions:

 1.Widening conversion

 2.Narrowing conversion

Widening Conversion

The widening conversion is permitted in the following cases:

 byte to short, int, long, float, or double

 short to int, long, float, or double

 char to int, long, float, or double

 int to long, float, or double

 long to float or double

 float to double

 When one type of data is assigned to another type of variable, an

automatic type conversion will take place if the following two

conditions are met:

 The two types are compatible.

 The destination type is larger than the source type.

 When these two conditions are met, a widening conversion takes

place.

Ex: char and boolean are not compatible with each other.

class Widening{

 public static void main(String args[]){

 short s;

 int i1,i2;

 byte b1=10,b2=20;

 s=b1; //byte to short

 i1=b2; //byte to int
 System.out.println("byte to short conversion");

 System.out.println(b1+ " " + s);

 System.out.println("byte to int conversion");

 System.out.println(b2+" "+i1);

 char c='a';

 i2=c; //char to int
 System.out.println("char to int conversion");

 System.out.println(c+" "+i2);

 }

}

 In general, the narrowing primitive conversion can occur in

these cases:

 short to byte or char

 char to byte or short

 int to byte, short, or char

 long to byte, short, or char

 float to byte, short, char, int, or long

 double to byte, short, char, int, long, or float

 Narrowing conversion is used to cast the above incompatible types.

 (target-type) value

Narrowing Conversion

public class Narrowing{

 public static void main(String args[]){

 byte b=2;

 int i=257;

 double d=323.142;

 System.out.println("int to byte conversion");

 b= (byte)i; //int to byte
 System.out.println("i and b values: "+i+" "+b);

 System.out.println("double to int conversion");

 i=(int)d; //double to int
 System.out.println("d amd i values: "+d+" "+i);

 System.out.println("double to byte conversion");

 b=(byte)d; //double to byte
 System.out.println("d amd b values: "+d+" "+b);

 }

}

 Arrays

 An array is a group of like-typed variables that are
referred to by a common name.

 The operator new is used for dynamic memory
allocation.

 One-Dimensional Arrays:

 type varname[];
 varname = new type[size];

 type varname[]=new type[size];

 Ex: int month[];
 Ex: month = new int[12];
 Ex: int varname[]=new int[size];

Multidimensional Arrays

int twoD[][]=new int[4][5];

 If month is a reference to an array, month.length will give
you the length of the array.

Initialization:

 int x[] = {1, 2, 3, 4};

 char []c = {‘a’, ‘b’, ‘c’};

 double d[][]= {

 {1.0,2.0,3.0},

 {4.0,5.0,6.0},

 {7.0,8.0,9.0}

 };

Jagged Array:

 int [][] x = new int[3][];

import java.util.Scanner;

class ArrayEx{

 public static void main(String args[]){

 Scanner input=new Scanner(System.in);

 int a[]={10,20,30,40,50};

 char []c={'a','b','c','d','e'};

 int b[]=new int[5];

 for(int i=0;i<5;i++){

 System.out.print(a[i]+" ");

 System.out.println(c[i]+" ");

 }

 for(int i=0;i<5;i++){

 b[i]=input.nextInt();

 }

 for(int i=0;i<5;i++){

 System.out.print(b[i]+" ");

 }

 }

}

Concepts of Classes, Objects

General Form of Class

class classname {

 type instance-variable1;

 //...

 type instance-variableN;

 static type variable1;

 type methodname1(parameter-list) {

 // body of method

 }

 // ...

 type methodnameN(parameter-list){

 // body of method

 }
}

Declaring an Object
class Box{

 double width;

 double height;

 double depth;

}

Representation 3: Assigning Object Reference Variables

Box b1 = new Box();

 Box b2 = b1;

Representation 1:

Box mybox;

mybox=new Box();

Representation 2:
Box mybox=new Box();

package packagename;

import statement;

class classname{

 //instance variables;

 //class or static variables;

 /*methods(parameters){

 //local variables;

 //object creation

 //statements;

 }*/

}

import java.util.Scanner;

class Demon{

 int i;

 static double d;

public static void main(String args[]){

 char c=‘a’;

 Demon obj=new Demon();

 Scanner s=new Scanner(System.in);

 d=s.nextDouble();

 System.out.println(obj.i);

 System.out.println(d);

 System.out.println(c);

 }

}

class classname{

 //instance variables;

 //class or static variables;

 /*methods(parameters){

 //local variables;

 //statements;

 }*/

}

class MainCLass{
public static void main(String args[])

{

 //object creation

 //invoking methods

 //statements

 }

}

class Test{

 char c='a';

 static float f;

 void display(){

 int i=10;

 System.out.println("Test:display()");

 System.out.println(“c value: “+c);

 System.out.println(“i value: “+i);

 System.out.println(“f value: “+f);

 }

}

class Demo{

 public static void main(String args[]){

 Test t=new Test();

 t.display();

 System.out.println("Demo:main()");

 }

}

Constructors and Methods

 A constructor is a special member function whose task is to initialize an

object immediately upon creation.

 The constructor is automatically called immediately after the object is

created.

 A constructor has the same name as the class in which it resides and is

syntactically similar to a method.

 If no constructor in program .System provides its own constructor called as

default constructor.

 Constructors doesn’t have any return type.

 A constructor which accepts parameters is called as parameterized constructor.

 Constructors can be overloaded.

Default Constructor:

 A constructor that accepts no parameters is called Default constructor.

 If not defined, provided by the compiler.

 The default constructor is called whenever an object is created without
specifying initial values.

Ex: class Box {

 double width;

 double height;

 double depth;

 Box() {

 width = 10;

 height = 10;

 depth = 10;

 }

 }

 // declare, allocate, and initialize Box objects

 Box mybox1 = new Box();

class Test{

 char c='a';

 static float f;

 Test(){

 int i=10;

 System.out.println("Test:Test()");

 System.out.println(“c value: “+c);

 System.out.println(“i value: “+i);

 System.out.println(“f value: “+f);

 }

}

class ConDemo{

 public static void main(String args[]){

 Test t=new Test();

 //t.Test();

System.out.println(“ConDemo:main()");

 }

}

class Test{

 int x,y;

 Test(int a, int b){

 x=a;

 y=b;

 System.out.println(“x value: “+x);

 System.out.println(“y value: “+y);

 }

}

class PConDemo{

public static void main(String args[]){

Test t=new Test(10,20);
System.out.println(“PConDemo:main()");

 }

}

//Parameterized Constructor // Non parameterized Default Constructor

Methods

General Form:

type name(parameter-list) {

 // body of method

}

 The type of data returned by a method must be compatible with

the return type specified by the method.

 The variable receiving the value returned by a method must also

be compatible with the return type specified for the method.

 return value; //Here, value is the value returned.

Ex:

double volume(double w, double h, double d) {

 return w*h*d;

}

class Box{

 double width;

 double height;

 double depth;

 Box(){

 width=10;

 height=10;

 depth=10;

 }

 double volume(){

 return width*height*depth;

 }

}

class BoxDemo6{

public static void main(String args[]){

 Box mybox1=new Box();

 Box mybox2=new Box();

 double vol;

 vol=mybox1.volume();

 System.out.println("Volume is: "+vol);

 vol=mybox2.volume();

 System.out.println("Volume is: "+vol);

 }

}

Non parameterized or default Constructor

class Box{

 double width;

 double height;

 double depth;

Box(double w,double h,double d){

 width=w;

 height=h;

 depth=d;

}

 double volume(){

 return width*height*depth;

 }

}

class BoxDemo7{

 public static void main(String args[]){

 Box mybox1=new Box(10,20,15);

 Box mybox2=new Box(3,6,9);

 double vol;

 vol=mybox1.volume();

 System.out.println("Volume is: "+vol);

 vol=mybox2.volume();

 System.out.println("Volume is: "+vol);

 }

 }

Parameterized Constructor

default :

 When no access specifier is used, then by default the

member of a class is public within its own package, but

cannot be accessed outside of its package.

private:

 A private member is accessible only to the class in which it

is defined.

 Use private keyword to create private members.

Access Control

public:

 Any class, in any package has access to a class's public

members.

 To declare a public member, use the keyword public.

protected:

 Allows the class itself, subclasses, and all classes in the same

package to access the members.

 To declare a protected member, use the keyword protected.

class Test {

 int a; // default access

 public int b; // public access

 private int c; // private access

 /*protected applies only

 when inheritance is involved*/

 // methods to access c

 void setc(int i){

 c = i; // set c's value

 }

 int getc() {

 return c; // get c's value

 }

}

class AccessTest {

 public static void main(String args[]) {

 Test ob = new Test();

// These are OK, a and b may be accessed directly

 ob.a = 10;

 ob.b = 20;

// This is not OK and will cause an error

 //ob.c = 100; // Error!

// You must access c through its methods

 ob.setc(100); // OK

System.out.println(ob.a + " " +ob.b + " " + ob.getc());

 }

}

//Example for access control

Method & Constructor Overloading

 Defining two or more methods within the same class that share the
same name is called method overloading.

 Java uses the type and/or number of arguments to determine
which version of the overloaded method to call.

 Constructors can also be overloaded in the same way as method
overloading.

class OverloadDemo {

 void test() {

 System.out.println("No parameters");

 }

 void test(int a) {

 System.out.println("a: " + a);

 }

 void test(int a, int b) {

 System.out.println("a and b: " + a + " " + b);

 }

 double test(double a) {

 System.out.println("double a: " + a);

 return a*a;

 }

}

class Overload {

 public static void main(String args[]) {

 OverloadDemo ob = new OverloadDemo();

 double result;

 ob.test();

 ob.test(10);

 ob.test(10, 20);

 result = ob.test(123.25);

 System.out.println("Result of ob.test(123.25): " + result);

} }

//method overloading

 //Constructor Overloading

class CDemo{

 int value1;

 int value2;

 CDemo(){

 value1 = 10;

 value2 = 20;

 System.out.println("Inside 1st

 Constructor");

 }

 CDemo(int a){

 value1 = a;

 System.out.println("Inside 2nd Constructor");

 }

 CDemo(int a,int b){

 value1 = a;

 value2 = b;

 System.out.println("Inside 3rd Constructor");

 }

 public void display(){

 System.out.println("Value1 === "+value1);

 System.out.println("Value2 === "+value2);

 }

public static void main(String args[]){

 CDemo d1 = new CDemo();

 CDemo d2 = new CDemo(30);

 CDemo d3 = new CDemo(30,40);

 d1.display();

 d2.display();

 d3.display();

 }

}

this
 In java, it is illegal to declare two local variables with the same name inside

the same or enclosing scopes.

 But you can have formal parameters to methods, which overlap with the

names of the class’ instance variables.

 this keyword is used to refer to the current object.

 this can be used to resolve any name collisions that might occur between

instance variables and formal variables.

 When a formal variable has the same name as an instance variable, the formal

variable hides the instance variable.

 Also used in method chaining and constructor chaining.

// instance and formal variables are different

class Box{

 double w=5,h=5,d=5;

 Box(double w1,double h1,double d1){

 w=w1;

 h=h1;

 d=d1;

 }

 double volume(){

 return w*h*d;

 }

}

class BoxTest1{

 public static void main(String args[]){

 Box b=new Box(1,2,3);

 System.out.println("Volume is: "+b.volume());

 }

}

Output:

Volume is:6.0

// instance and formal variables are same

class Box{

 double w=5,h=5,d=5;

 Box(double w,double h,double d){

 w=w;

 h=h;

 d=d;

 }

 double volume(){

 return w*h*d;

 }

}

class BoxTest2{

 public static void main(String args[]){

 Box b=new Box(1,2,3);

 System.out.println("Volume is: "+b.volume());

 }

}

Output:

Volume is:125.0

//’this’ hides the instance variables

class Box{

 double w=5,h=5,d=5;

 Box(double w,double h,double d){

 this.w=w;

 this.h=h;

 this.d=d;

}

 double volume(){

 return w*h*d;

 }

}

class BoxTest2{

 public static void main(String args[]){

 Box b=new Box(1,2,3);

 System.out.println("Volume is: "+b.volume());

 }

}

Output:

Volume is:6.0

class Fchain{ // method chaining

 int a,b;

 Fchain setValue(int x,int y){

 a=x;

 b=y;

 return this;

 }

 Fchain disp(){

 System.out.println("a value is:"+a);

 System.out.println("b value is:"+b);

 return this;

 }

}

class FchainDemo{

 public static void main(String args[]){

 Fchain f1=new Fchain();

 f1.setValue(10,20).disp().setValue(11,22).disp();

 }

}

//Constructor Chaining

class Test{

 int a,b,c,d;

 Test(int x,int y){

 a=x;

 b=y;

 }

 Test(int x,int y,int z){

 this(x,y);

 c=z;

 }

 Test(int p,int q,int r,int s){

 this(p,q,r);

 d=s;

 }

 void disp(){

 System.out.println(a+” ”+b+” ”+c+” ”+d);

 }

}

class TestDemo{

 public static void main(String args[]){

 Test t1=new Test(10,20,30,40);

 t1.disp();

 }

}

Parameter Passing

 The call-by-value copies the value of a actual parameter into

the formal parameter of the method.

 In this method, changes made to the formal parameter of the

method have no effect on the actual parameter.

 In call-by-reference, a reference to an actual parameter (not the

value of the argument) is passed to the formal parameter.

 In this method, changes made to the actual parameter will affect

the actual parameter used to call the method.

// Simple types are passed by value.

class Test {

 void meth(int i, int j) {

 i *= 2;

 j /= 2;

 }

}

class CallByValue {

 public static void main(String args[]) {

 Test ob = new Test();

 int a = 15, b = 20;

 System.out.println("a and b before call: " +a + " " + b);

 ob.meth(a, b);

 System.out.println("a and b after call: " +a + " " + b);

 }

}

// Objects are passed by reference.

class Test {

 int a, b;

 Test(int i, int j) {

 a = i;

 b = j;

 }

 void meth(Test o) { // pass an object

 o.a *= 2;

 o.b /= 2;

 }

}

class CallByRef {

 public static void main(String args[]) {

 Test ob = new Test(15, 20);

 System.out.println("ob.a and ob.b before call: " +ob.a + " " + ob.b);

 ob.meth(ob);

 System.out.println("ob.a and ob.b after call: " +ob.a + " " + ob.b);

} }

class Box{ //call by reference
 double width,height,depth;

 Box(Box ob) {

 width = ob.width;

 height = ob.height;

 depth = ob.depth;

 }

 Box(double w, double h, double d){

 width = w;

 height = h;

 depth = d;

 }

 Box(){

 width = -1;

 height = -1;

 depth = -1;

 }

 Box(double len) {

 width = height = depth = len;

 }

 double volume() {

 return width * height * depth;

 }

}

class OverloadCons2 {

 public static void main(String args[]) {

 Box mybox1 = new Box(10, 20, 15);

 Box mybox2 = new Box();

 Box mycube = new Box(7);

 Box myclone = new Box(mybox1);

 double vol;

 vol = mybox1.volume();

 System.out.println("Volume of mybox1 is " + vol);

 vol = mybox2.volume();

 System.out.println("Volume of mybox2 is " + vol);

 vol = mycube.volume();

 System.out.println("Volume of cube is " + vol);

 vol = myclone.volume();

 System.out.println("Volume of clone is " + vol);

 }

}

Recursion

Recursion is the process of defining something in terms of
itself.

A method that calls itself is said to be recursive.

class Factorial{

 int fact(int n){

 int result;

 if(n==1)

 return 1;

 else

 result = fact(n-1) * n;

 return result;

 }

}

class Recursion {

 public static void main(String args[]) {

 Factorial f = new Factorial();

 System.out.println("Factorial of 3 is " + f.fact(3));

 System.out.println("Factorial of 4 is " + f.fact(4));

 System.out.println("Factorial of 5 is " + f.fact(5));

 }

}

Garbage Collection

 Garbage collection done automatically in java.

 When no reference to an object exist, that object is assumed to

be no loner needed, and the memory occupied by the object can

be reclaimed.

 Garbage collection only occurs at regular intervals during the

execution of your program.

 We can run garbage collection on demand by calling the gc()

method.

 public static void gc(): Initiates the garbage collection.

 System.gc();

public class GarbageCollector{

 public static void main(String[] args) {

 int SIZE = 200;

 StringBuffer s;

 for (int i = 0; i < SIZE; i++) {

 }

 System.out.println("Garbage Collection started explicitly.");

 System.gc();

 }

}

finalize() method

 Sometimes an object will need to perform some action when it is
destroyed.

 Ex:

 If an object is holding some non-java resource such as a file, then you
might want to make sure these resources are freed before an object is
destroyed.

 To handle such situations, Java provides a mechanism called
finalization.

 The finalize() method has this general form:

 protected void finalize(){

 // finalization code here

 }

Types of string handling classes:

 String

 Once an object is created, no modifications can be done on that.

 StringBuffer

 Modifications can be allowed on created object.

 StringTokenizer

 Used to divide the string into substrings based on tokens.

String and SringBuffer classes are available in java.lang package where as

StringTokenizer class is available in java.util package.

String Handling

String
 In java a string is a sequence of characters. They are objects of type String.

 Once a String object has been created, we can not change the characters that
comprise in the string.

 Strings are unchangeable once they are created so they are called as
immutable.

 You can still perform all types of string operations. But, a new String object
is created that contains the modifications. The original string is left
unchanged.

 To get changeable strings use the class called StringBuffer.

 String and StringBuffer classes are declared final, so there cannot be
subclasses of these classes.

 String class is defined in java.lang package, so these are available to all
programmers automatically.

 String s= new String();

 String(char chars[])

 String(char chars[], int startIndex, int numChars)

 String(String strobj)

 String str=new String(“SNIST”);

 String str[]=new String[size];

String Constructors

String Constructors

 String s= new String(); //To create an empty String call the default constructor.

 String(char chars[]) //To create a string initialized by an array of characters.

 String str = "abcd"; is equivalent to

 char chars[]={‘a’,’b’,’c’,’d’};

 String s=new String(chars);

 String(char chars[], int startIndex, int numChars) //To create a string by specifying
 positions from an array of characters

 char chars[]={‘a’,’b’,’c’,’d’,’e’,’f’};

 String s=new String(chars,2,3); //This initializes s with characters “cde”.

 String(String str); //Construct a string object by passing another string object.

 String str = "abcd";

 String str2 = new String(str);

 String(byte asciiChars[]) // Construct a string from subset of byte array.

 String(byte asciiChars[], int startIndex, int numChars)

// Construct one String from another.

class MakeString {

 public static void main(String args[]) {

 char c[] = {'J', 'a', 'v', 'a'};

 String s1 = new String(c);

 String s2 = new String(s1);

 System.out.println(s1);

 System.out.println(s2);

 }

}

Output:

Java

Java

// Construct string from subset of char array.

class SubStringCons {

 public static void main(String args[]) {

 byte ascii[] = {65, 66, 67, 68, 69, 70 };

 String s1 = new String(ascii);

 System.out.println(s1);

 String s2 = new String(ascii, 2, 3);

 System.out.println(s2);

 }

}

Output:

ABCDEF

CDE

String Length

 char chars[] = { 'a', 'b', 'c' };

 String s = new String(chars);

 System.out.println(s.length()); //it returns 3.

 Special String Operations

 String Concatenation

 String Concatenation with Other Data Types

 String Conversion and toString()

 Character Extraction

 charAt()

 getChars()

 getBytes()

 toCharArray()

 String Comparison

 equals() and equalsIgnoreCase()

 regionMatches(), startsWith() and endsWith()

 equals() Versus ==

 compareTo()

 Searching Strings

 Modifying a String

 substring()

 concat()

 replace()

 trim()

 Changing the Case of Characters Within a String

Special String Operations
String Concatenation

 String age = "9";

 String s = "He is " + age + " years old.";

 System.out.println(s); // He is 9 years old.

String Concatenation with Other Data Types

 int age = 9;

 String s = "He is " + age + " years old.";

 System.out.println(s); // He is 9 years old.

 String s = "four: " + 2 + 2;

 System.out.println(s);

 //This fragment displays four: 22 rather than the four: 4

 String s = "four: " + (2 + 2);

 //Now s contains the string “four: 4”.

Special String Operations

String Conversion using toString()

// Override toString() for Box class.

class Box {

 double width;

 double height;

 double depth;

 Box(double w, double h, double d) {

 width = w;

 height = h;

 depth = d;

}

 public String toString() {

 return "Dimensions are " + width + " by "

+depth + " by " + height + ".";

 }

}

class toStringDemo {

public static void main(String args[]) {

 Box b = new Box(10, 12, 14);

 String s = "Box b: " + b;

 // concatenate Box object

 System.out.println(b);

 // convert Box to string

 System.out.println(s);

 }

}

The output of this program is shown here:

Dimensions are 10.0 by 14.0 by 12.0

Box b: Dimensions are 10.0 by 14.0 by 12.0

Box’s toString() method is automatically invoked when a Box object is used in a

concatenation expression or in a call to println().

Character Extraction

char charAt(int where)

//To extract a single character from a String

 char ch;

 ch = "abc".charAt(1);

 //assigns the value “b” to ch.

 void getChars(int sourceStart, int sourceEnd, char

target[], int targetStart)

//to extract more than one character at a time.

byte[] getBytes()

//to store the characters in an array of bytes and it

uses the default character-to-byte conversions

provided by the platform.

//String source=“hi”+”how”+”are”+”you.”

//byte buf[] = source.getBytes();

char[] toCharArray()

//to convert all the characters in a String object into a

character array. It returns an array of characters for

the entire string.

class getCharsDemo {

public static void main(String args[]) {

 String s = "This is a demo of the

 getChars method.";

 int start = 10;

 int end = 14;

 char buf[] = new char[end - start];

 s.getChars(start, end, buf, 0);

 System.out.println (buf);

 }

}

Here is the output of this program: demo

class GetBytesDemo{

 public static void main(String[] args){

 String str = "abc“ + ”ABC”;

 byte[] b = str.getBytes();

 //char[] c=str.toCharArray();

 System.out.println(str);

 for(int i=0;i<b.length;i++){

 System.out.print(b[i]+" ");

 //System.out.print(c[i]+" ");

 }

 }

}

Output:

 97 98 99 65 66 67

 //a b c A B C

String Comparison

 boolean equals(Object str)

 //To compare two strings for equality. It returns true if the strings contain the same

characters in the same order, and false otherwise.

 boolean equalsIgnoreCase(String str)

 //To perform a comparison that ignores case differences.

// Demonstrate equals() and equalsIgnoreCase().

class equalsDemo {

 public static void main(String args[]) {

 String s1 = "Hello";

 String s2 = "Hello";

 String s3 = "Good-bye";

 String s4 = "HELLO";

 System.out.println(s1.equals(s2));

 System.out.println(s1.equals(s3));

System.out.println(s1.equals(s4));

System.out.println(s1.equalsIgnoreCase(s4));

 }

}

The output from the program is shown here:

true

false

false

true

String Comparison

boolean regionMatches(int startIndex, String str2, int str2StartIndex, int

numChars)

boolean regionMatches(boolean ignoreCase, int startIndex, String str2, int

str2StartIndex, int numChars)

//The regionMatches() method compares a specific region inside a string

with another specific region in another string.

//startIndex specifies the index at which the region begins within the

invoking String object.

//The String being compared is specified by str2. The index at which the

comparison will start within str2 is specified by str2StartIndex.

//The length of the substring being compared is passed in numChars.

class RegionTest{

 public static void main(String args[]){

 String str1 = "This is Test";

 String str2 = "THIS IS TEST";

 if(str1.regionMatches(5,str2,5,3)) {

 // Case, pos1,secdString,pos1,len
 System.out.println("Strings are Equal");

 }

 else{

 System.out.println("Strings are NOT Equal");

 }

 }

}

Output:

Strings are NOT Equal

String Comparison

boolean startsWith(String str) //to determine whether a given String

begins with a specified string.

boolean endsWith(String str) // to determine whether the String in

question ends with a specified string.

Ex: "Football".endsWith("ball") and "Football".startsWith("Foot") are both true.

boolean startsWith(String str, int startIndex) //to specifies the index into

the invoking string at which point the search will begin.

Ex: "Football".startsWith("ball", 4) returns true.

 equals() Versus ==

// It compares the characters inside a String object

//To compare two object references to see whether they refer to the same

instance.

String Comparison

// equals() vs ==

class EqualsNotEqualTo {

 public static void main(String args[]) {

 String s1 = "Hello";

 String s2 = new String(s1);

 //String s2 = s1;

 System.out.println(s1.equals(s2));

 System.out.println(s1 == s2);

 }

}

Output:

true

false

String Comparison

int compareTo(String str)

 Value Meaning

 Less than zero The invoking string is less than str.

 Greater than zero The invoking string is greater than str.

 Zero The two strings are equal.

int compareToIgnoreCase(String str)

String Comparison

class SortString {

 static String arr[] = {

 "Now", "is", "the", "time", "for", "all", "good", "men",

 "to", "come", "to", "the", "aid", "of", "their", "country“};

 public static void main(String args[]) {

 for(int j = 0; j < arr.length; j++) {

 for(int i = j + 1; i < arr.length; i++) {

 if(arr[i].compareTo(arr[j]) < 0) {

 String t = arr[j];

 arr[j] = arr[i];

 arr[i] = t;

 }

 }

 System.out.println(arr[j]);

 }

 }

}
The output of this program is the list of words:

Now aid all come country for good is men of

the the their time to to

String Comparison

