
MERN
MangoDB, Express.js, React, and Node.js

Understanding the Basic Web Development Framework

The fundamental components of Web Application is
1. User
2. Browser

a. Browser-to-webserver communication
b. Rendering the browser view (displaying the

page)
c. User interaction

3. Web server
4. Backend services 1

2

3

4

2a

2b

2c

• The user role in a web framework is to sit on the visual output and interaction input of

webpages.

• users view the results of the web framework processing and then provide interactions using

mouse clicks, keyboard input, and swipes and taps on mobile devices.

The browser plays three roles in the web framework.

• Communication: It provides communication to and from the webserver.

• Rendering(displaying): It interprets the data from the server and renders it to visualize the

user

• User interaction : It handles user interaction through the keyboard, mouse, touchscreen, or

other input device and takes the appropriate action.

1. Role of user

2. Role of browser

2 a) Communication between Browser and webserver

The browser makes three main types of requests to the server:

• GET: The GET request is used to retrieve data from the server, such as .html files, images, or

JSON data.

• POST: POST requests are used when sending data to the server, such as adding an item to a

shopping cart or submitting a web form.

• AJAX: Asynchronous JavaScript and XML (AJAX) is actually just a GET or POST request

done directly by JavaScript running in the browser. Despite the name, an AJAX request can

receive XML, JSON, or raw data in the response.

Why JSON and XML?

• JSON is commonly used in web applications

and API calls to transfer data between a server

and a web application.

• JSON is compact and easy to parse in web

browsers.

• JSON can be parsed by a standard JavaScript

function.

• Extensible Markup Language (XML) is a

markup language used to store, transport, and

exchange data between applications,

platforms, and organizations

• XML has to be parsed with an XML parser.

JSON(Java Script Object Notation) XML (Extensible Markup Language)

{"employees":[
{ "firstName":"John", "lastName":"Doe" },
{ "firstName":"Anna", "lastName":"Smith" },
{ "firstName":"Peter", "lastName":"Jones" }

]}

<employees>
<employee>
<firstName>John</firstName>

 <lastName>Doe</lastName>
</employee>
<employee>
<firstName>Anna</firstName>

 <lastName>Smith</lastName>
</employee>
<employee>
<firstName>Peter</firstName>

 <lastName>Jones</lastName>
</employee>

</employees>

2 b) Rendering: Displaying the data from server in browser

• The browser reads data
from the initial URL and
then renders the HTML
document to build a
Document Object Model
(DOM).

 document

+ html

+ head

+ body

+ div

+ p

HTML files: These provide the fundamental structure of the DOM.

CSS files: These define how each of the elements on the page is to be

styled; for example, font, color, borders, and spacing.

Client-side scripts: These are typically JavaScript files. They can

provideadded functionality to the webpage, manipulate the DOM to

change the look of the webpage, and provide any necessary logic required

to display the page and provide functionality.

Media files: Image, video, and sound files are rendered as part of the

webpage.

Data: Any data, such as XML, JSON, or raw text, can be provided by the

webserver as a response to an AJAX request. Rather than sending a

request back to the server to rebuild the webpage, new data can be

retrieved via AJAX and inserted into the webpage via JavaScript.

HTTP headers: The HTTP protocol defines a set of headers that can be

used by the browser and client-side scripts to define the behavior of the

webpage. For example, cookies are contained in the HTTP headers. The

HTTP headers also define the type of data in the request as well as the

type of data expected to be returned back to the browser.

3. Web server

The webserver’s focus is handling requests from browsers.

• the browser may request a document, post data, or perform an AJAX request to get a data.

• The webserver uses the HTTP headers as well as the URL to determine the action to be taken.

• It contains server side scripts to handle POST requests that modify data and AJAX requests to interact with

backend services.

• A server-side program that is executed by webserver to perform the browser requests. It can be written in

PHP,python,C,C++,C#,Java…..

• The server-side scripts either generate the response directly by executing their code or connect with other

backend servers such as databases to obtain the necessary information , which is used to build and send the

response.

4. Backend Services

Backend services are services that run behind the webserver and provide data used to build responses to the

browser.

Example : CRUD operations in database.

Understanding the Node.js-to-Angular Stack Components

JavaScript end-to-end

Node.js

Node.js is a development framework based on Google’s V8 JavaScript engine. Node.js code is

written in JavaScript and then compiled into machine code by V8 to be executed.

• Javascript end-to-end

• Scalability

• Extensibility

• Ease of installation and use

MongoDB:

MongoDB is a document database with the scalability and flexibility that querying and indexing

made as per the user requirement.

• Document Orientation

• High performance

• High availability

• High Scalability

• No SQL injection

ExpressJS

Express is a minimal and flexible Node.js web application framework that provides a robust set of

features for web and mobile applications.

• Route Management

• Error Handling

• Easy Integration

• Cookies

• Session and Cache Management

Angular

Angular is a client-side framework developed by Google. Angular provides all the functionality needed to

handle user input in the browser, manipulate data on the client side, and control how elements are

displayed in the browser view. It is written using TypeScript and uses MVC framework.

• Data binding

• Extensibility

• Clean

• Reusable code

• Support

• Compatability.

HTML

CSS

Java Script

Web browser

web page

 HTML
 CSS
 JavaScript

Understanding the role of java script in web application

• Browser has in-memory representation of web page
known as DOM(Document Object Model).

Analogous to brain signals which controls the behavior of dog. • JavaScript manipulates the DOM to control the
behavior of web page.

• JavaScript doesn’t modify the HTML document. Brain signals doesn’t modify the structure of dog.

JavaScript
• JavaScript is a programming language , which runs inside the web browser, and

controls the behavior of the web page.

Programming language • It is similar to object-oriented programming languages like C++, java,
and python

Runs inside a browser • It is just-in-time compiled and executed by the browser.
• It is client-side technology, now it can run on the server side.

Behavior of the web page • It is brain of the web page that controls the appearance,
communication and interactions etc.

Fundamental features of JavaScript

• Variables

• Functions

• Loops

• Arrays

• Objects

• Input and output

Variable declaration
a = 20; With out specifying we can declare a variable and a value to it

var a =20;

let a =20;

Use var keyword to declare a variable

Use let keyword to declare a variable, not allowed to redeclare with the same name.

Strict mode makes several changes to normal JavaScript semantics:
• Eliminates some JavaScript silent errors by changing them to throw errors.
• Fixes mistakes that make it difficult for JavaScript engines to perform optimizations: strict

mode code can sometimes be made to run faster than identical code that's not strict
mode.

• Prohibits some syntax likely to be defined in future versions of ECMAScript.

JavaScript Data types

Datatype Object

Wrapper

Purpose

Number Number For integers and real values

BigInt BigInt
Used for Large integers specified by

appending n to the number

String String Character data

Boolean Boolean true or false

Undefined --
To identify a variable is not defined

or default value of declared variables

Null --
A variable is defined and assigned

explicitly null.

JavaScript Operators
Operators Symbols used

Arithmetic +, -, *, /, %, **(exponentiation)

Relational <,>,<=,>=,==,!=,

===(strictly equal),!==(strictly not equal)

Logical &&, ||, !, ??(nullish Coalescing operator)

Bitwise &, |, ^, ~, <<, >>, >>>(unsigned right shift/

zero-fill right shift)

Assignment =,-=,*=,/=,%=,**=, &&= , ||= , ??= , &=,|=,^=,

<<=, >>=, <<<=

Ternary ?:

Unary -, +, ++, --, typeof, instanceof, delete

Other ,(comma), of, in, new

Relational Operator

console.log('100' == 100)// checks only the content

Output: true

console.log('100’ === 100)// checks content and type also

Output: false

==(equal) vs. ===(strictly equal)

Similarly , it is same for != and !==(strictly not equal)

??(nullish Coalescing operator)

var res = expr1??expr2

Returns expr1 if it is neither null nor undefined; otherwise,

returns expr2.

Logical Operator

Expression Result Binary Description

15 & 9 9 1111 & 1001 = 1001

15 | 9 15 1111 | 1001 = 1111

15 ^ 9 6 1111 ^ 1001 = 0110

~15 -16 ~ 0000 0000 … 0000 1111 = 1111 1111 … 1111 0000

~9 -10 ~ 0000 0000 … 0000 1001 = 1111 1111 … 1111 0110

9<<2 36 0000 1001 = 0010 0100

9>>2 2 0000 1001 = 0000 0010

-9>>2 -3
0000 1001 = 1111 0111 = 1111 1101 = -3 (1000 0011)
Copy of leftmost bit are shifted in from the left

19>>>2 4
0001 0011 = 0000 0100
Not applicable for BigInt datatype
zeros are shifted in from the left

Bit-wise Operators

Functions in JavaScript

In JavaScript , functions are the first class members because

• functions can be take another function as an argument

• Functions can return another function

• Function can store in a variable.

In JavaScript function is defined as follows

function functionname(parameters){
 // body of the function;
}

function add(x, y) {
 return x+y;
}
var res = add(2,3);
Console.log(“the sum of 2 and 3 is ”, res);

Function Declaration
function multiply(x, y) {
 return x * y;
}

Function Expression

// Expression; the function is anonymous but assigned to a
variable
const multiply = function (x, y) {
 return x * y;
};
// Expression; the function has its own name
const multiply = function funcName(x, y) {
 return x * y;
};

Function Constructor const multiply = new Function("x", "y", "return x * y");

Arrow functions const multiply = (x, y) => x * y;

let result = multiply(3,4);
console.log(“Multiplication of 3 and 4 is “, result);

Method

const obj = {
 multiply(x, y) {
 return x * y;
 },
};

let result = obj.multiply(3,4);
Console.log(“multiplication of 3 and 4
is”, result);

Different ways of creating functions in JavaScript

let addition = function(a,b){
 return a+b;
}
let multiplication =function(a,b){
 return a*b;
}
let division =function(a,b) {
 return a/b;
}
let subtraction =function(a,b){
 return a-b;
}
function calculate(a,b,calculationType){
 return calculationType(a,b);
}
let result = calculate(10,20,addition);
console.log("addition =",result);

Function as an argument to another function

function map(f, a) {
 const result = new Array(a.length);
 for (let i = 0; i < a.length; i++) {
 result[i] = f(a[i]);
 }
 return result;
 }

 const cube = function (x) {
 return x * x * x;
 };

 const numbers = [0, 1, 2, 5, 10];
 console.log(map(cube, numbers)); // [0, 1, 8, 125, 1000]

Function expressions are convenient for passing functions as arguments to
another function.

let fxRates ={
 INR: 84.7,
 EUR: 1.1
}
let discounts ={
 INR : 0.1,
 EUR : 0.2
}
let inCart={
 id:1,
 total: 78000,
 currency : "INR"
}
let erCart={
 id:2,
 total: 489,
 currency: "EUR"
}

Function return type is function

function getTotalPrice(cart){
 cart.finalTotal = cart.total*(1-discounts[cart.currency]);
 function totalUSDPrice(){
 return cart.finalTotal/fxRates[cart.currency];
 }
 return totalUSDPrice;
}
let inCartTotalUSD = getTotalPrice(inCart);
console.log("total of order from india is $",inCartTotalUSD());

let eucartTotalUSD =getTotalPrice(erCart);
console.log("total of order from Europe is $",eucartTotalUSD());

Arrays in javascript

Creating an array Using array constructor
let arr = new Array(4); // creates an array of size 4
 (Or)
let arr = [] ; // creates an empty array
arr[0] = “A” ; arr[1] = “B”; arr[2] = 2.74 ; arr[3] = “hello”

Iterating an array for (var i =0; I < a.length; i++)
 console.log(arr[i]);
Output
A
B
2.74
hello

for(i of arr)
console.log(i);

Output
A
B
2.74
hello

Rest parameter

function add(x,y){ // x=8, y= 4
 let s=x+y;
 return s;

}
let addition = add(8,4,5,3);
console.log(addition); //outputs 12

In javascript, function
parameters are taken as an array

function add(...nums){
 let s=0;
 for(i of nums)
 s=s+i;
 return s;

}
let addition = add(8,4,5,3);
console.log(addition); //outputs 20

Before rest parameter any number of formal arguments may present, but after
rest parameter it should not contain any formal argument.
 function fun_name(arg1,arg2, …restparam) ----→ allowed
 function fun_name(…restparam,arg1,arg2) ----→ not allowed

Destructing
an array

Copying an
array

Shallow copy – modification of copied array
affects the original array

Deep copy: modification of copied array
doesn’t affect the original array

let num=[10,20,30,40]
let [a,b,c,d]=num;
console.log(a+" "+b+" "+c+" "+d); // outputs 10 20 30 40

let prices= new Array(10,20,5,15,25);
let scopy=prices;
scopy[0]=50;
console.log(“scopy "+scopy);
//outputs scopy 50, 20, 5, 15, 25
console.log("prices "+prices);
//outputs prices 50, 20, 5, 15, 25

let prices= new Array(10,20,5,15,25);
let scopy=prices.slice();
scopy[0]=50;
console.log(“scopy "+scopy);
//outputs scopy 50, 20, 5, 15, 25
console.log("prices "+prices);
//outputs prices 10, 20, 5, 15, 25

Array Operations • push – insert at end
• unshift – insert at begin
• pop – remove at end
• shift – remove at begin
• delete arr[index] – delete the element at index , it is replaced with undefined

value
• splice – used to insert the element at specified position.
• slice – used to cut the array

Syntax:
splice(startIndex, no_ of_ elements_to_remove, element_list);
var arr= [10,20,30,40,50]
arr.splice(2,0,25,28);// starting from index 2 remove 0 elements and insert 25 and
28 at index 2 and 3 respectively.
Console.log(arr) ; // [10, 20, 25, 28, 30, 40, 50]

Syntax:
slice(start,end) -> copies from start index to end-1 index.
slice(start) -> copies from start index to last
slice(-start) -> copies from last of the array
slice(-start,-end) -> copies from start to end-1 from last of the array

concat let arr1 = [2, 11, 5]
let arr2 = [3, 19, 7]
let arr3 = [4, 9, 6]
let newArray1 = arr1.concat(arr2) // newArray1 = [2, 11,5,3,19, 7]
let newArray2 = arr2.concat(arr1, arr3) // newArray2 = [3, 19, 7, 2, 11, 5, 4, 9, 6]

sort

Sorts the original array and perform alphabetical order.
Make a copy using spread operator/slice

To sort the numbers in numerical order pass comparator function to sort method

let arr1=[3,10,20,30,40,50];
let sortedArray = arr1.sort();
console.log(arr1); // arr1 = [10, 20, 3, 30, 40, 50]
console.log(sortedArray);// sortedArray= [10, 20, 3, 30, 40, 50]

let arr1=[3,10,20,30,40,50];
let sortedArray1= [...arr1].sort();
console.log(arr1); // arr1 = [3, 10, 20, 30, 40, 50]
console.log(sortedArray1); // sortedArray= [10, 20, 3, 30, 40, 50]

Objects in javascript

• An object is a set of key-value pairs, where the values can also be
functions.

• Each key-value pair is called a property of the object.

• They are similar to maps, dictionaries, and associative arrays.

let car={

 make:"volvo",

 model:"s60",

 price:40000,

};

console.log("make of the car is ", car.make);

console.log("model of the car is ",car.model);

console.log("the price of the car is ",car.price);

function car(make,model,price){

 this.make=make;

 this.model=model;

 this.price=price;

}

let myCar = new car(“volvo",“s60",40000);

console.log("make of the car is ", myCar.make);

console.log("model of the car is ",myCar.model);

console.log("the price of the car is ",myCar.price);

let myCar=new Object();

myCar.make="volvo";

myCar.model="s60";

myCar.price=40000;

console.log("make of the car is ", myCar.make);

console.log("model of the car is ",myCar.model);

console.log("the price of the car is ",myCar.price);

Using Object
constructor

Using Function
constructor

Objects can include functions as members

function car(make,model,price,engine){
 this.make=make;
 this.model=model;
 this.price=price;
 this.engine=engine
 this.details=function(){
 console.log(`make : ${this.make} model: ${this.model}price: ${this.price}`);
 }
 this.engine.details=function(){
 console.log(`Displacement: ${this.displacement} horsepower: ${this.horsepower}`);
 }
}
let s60engine={
 cylinders:4,
 displacement:2000,
 horsepower:250
}
let mycar=new car("volvo","s60",250000,s60engine);
mycar.details();
mycar.engine.details();

Asynchronous Programming
• By default, javascript works in synchronous

function makeGreeting(name) {
 return `Hello, my name is ${name}!`;
}
const name = “paul william";
const greeting = makeGreeting(name);
console.log(greeting); // "Hello, my name is paul william!"

makeGreeting () is a synchronous function because
the caller has to wait for the function to finish its
work and return a value before the caller can
continue.

What we need is a way for our program to:

1.Start a long-running operation by calling a function.

2.Have that function start the operation and return immediately, so that our program can still be responsive

to other events.

3.Have the function execute the operation in a way that does not block the main thread, for example by

starting a new thread.

4.Notify us with the result of the operation when it eventually completes.

What happens if synchronous function takes long time?

It is known as Asynchronous programming.

Need callbacks,
promises and

async and wait

Callbacks
A callback function is a function passed into another function as an argument, which is
then invoked inside the outer function to complete some kind of routine or action.

There are two ways in which the callback may be called: synchronous and asynchronous.
Synchronous callbacks are called immediately after the invocation of the outer function,
with no intervening asynchronous tasks, while asynchronous callbacks are called at some
point later, after an asynchronous operation has completed.

It is used to provide Asynchronicity to javascript

document.getElementById('button').addEventListener('click', () => {
 // item clicked
});

Don’t know when the user
clicks the button, but
when the user clicks the
respective action will be
performed

var items =[
 {name:"vegetables", price:25},
 {name:"meat", price:18},
 {name:"cake", price:10},
 {name:"drinks", price:12}
]

function getTotalCost(items,callback){
 var totalCost=0;
 for(const item of items){
 totalCost+=item.price;
 }
 return callback(totalCost);
}
function applyTax(totalCost){
 return 1.1*totalCost;
}
console.log(“total cost of items after tax”,
getTotalCost(items,applyTax));

var items =[
 {name:"vegetables", price:25},
 {name:"meat", price:18},
 {name:"cake", price:10},
 {name:"drinks", price:12}
]

function getTotalCost(items){
 var totalCost=0;
 for(const item of items){
 totalCost+=item.price;
 }
 return totalCost;
}
function applyTax(totalCost){
 return 1.1*totalCost;
}
var totalCost = getTotalCost(items);
console.log("total cost of items",totalCost);
console.log("total cost of items after
tax",applyTax(totalCost));

Without callback With callback

let regularFunction =()=> {
 return "Hello";
}
let timeoutFunction=(msg)=>{
 var returnMsg;
 setTimeout(()=>{
 console.log("inout message to time out function: ", msg);
 returnMsg=msg+" World";
 console.log("timeout function has constructred returnMsg: ", returnMsg);
 return returnMsg;
 },2000);
}
let followUpFunction = (msg)=> {
 console.log("Follow up timeout returned: ",msg);
}
console.log('Before calling any function');
var regularReturn=regularFunction();
var timoutReturn=timeoutFunction(regularReturn);
followUpFunction(timoutReturn);

Exception Handling
In javascript, exceptions are handled by using

• throw statement
• try---catch statement

Use the throw statement to throw an exception. A throw statement specifies the value to be thrown:

throw expression;

examples
throw "Error2"; // String type
throw 42; // Number type
throw true; // Boolean type
throw {
 toString() {
 return "I'm an object!";
 },
};

function getMonthName(mo) {
 mo--; // Adjust month number for array index (so that 0 = Jan, 11 = Dec)
 const months = [
 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec",
];
 if (months[mo]) {
 return months[mo];
 } else {
 throw "InvalidMonthNo"; // throw keyword is used here
 }
 }

 try {
 // statements to try
 monthName = getMonthName(0); // function could throw exception
 console.log(monthName);
 } catch (e) {
 console.log(e);
 }

try…catch…finally

function f() {
 try {
 console.log(0);
 throw "zero";
 } catch (e) {
 console.log(1);
 // This return statement is suspended
 // until finally block has completed
 return true;
 console.log(2); // not reachable
 } finally {
 console.log(3);
 return false; // overwrites the previous "return"
 console.log(4); // not reachable
 }
 // "return false" is executed now
 console.log(5); // not reachable
 }
 console.log(f()); // 0, 1, 3, false

	Slide 1: MERN
	Slide 2
	Slide 3
	Slide 4: 2 a) Communication between Browser and webserver
	Slide 5
	Slide 6: 2 b) Rendering: Displaying the data from server in browser
	Slide 7: 3. Web server
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: JavaScript
	Slide 13: Variable declaration
	Slide 14: JavaScript Data types
	Slide 15: JavaScript Operators
	Slide 16: Relational Operator
	Slide 17: Bit-wise Operators
	Slide 18: Functions in JavaScript
	Slide 19: Different ways of creating functions in JavaScript
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Arrays in javascript
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Objects in javascript
	Slide 29
	Slide 30
	Slide 31: Asynchronous Programming
	Slide 32: Callbacks
	Slide 33
	Slide 34
	Slide 35: Exception Handling
	Slide 36
	Slide 37: try…catch…finally

