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Vector Visualization 

A vector is a tuple of n scalar components v = (v1,...,vn), vi ∈ R. An n-dimensional vector 

describes, for example, a position, direction, rate of change, or force in R
n. 

Visualization software defines all vectors to have three components. 2D vectors are modelled as 

3D vectors with the third (z) component equal to null
 

Computational Fluid Dynamics 

Application for vector visualization is CFD:. CFD simulations are able to predict the time-

dependent behavior of compressible 3D fluid flows interacting substances, or species, having 

different densities and pressures, over complex spatial geometries. The solution of a CFD 

simulation consists of several datasets, each for a different time step. For each time step, several 

attributes are computed and stored into the solution dataset, such as velocity, pressure, density, 

flow divergence, and vorticity. 

Divergence: Given a vector field v : R3 → R3, the divergence of v = (vx, vy, vz)
1
 is the scalar 

quantity. If v is a flow field that transports mass, div v characterizes the increase or loss of mass 

at a given point p in the vector field in unit time 

Vorticity: The vorticity vector characterizes the speed and direction of rotation of a given vector 

field at every point. Curl v 

Given a vector field v : R
3
 → R

3
, the vorticity of v, also called the curl or rotor of v2, is the 

vector quantity.  A vortex is a region where the vector field locally circles around a point called 

the vortex center. 

Vector Glyphs 

 Vector Glyphs or vector icon: to visualize vector fields. Mapping technique associates with 

every sample point of vector dataset. 

Properties of icon-vector attribute 

o Location 

o Direction  

o Orientation 

o Size and color 

o Every Glyph is a sign conveys the properties represented by vector 

Vector Glyphs: Line Glyphs 

Variations of vector glyphs based on the: 

 How many number of glyphs can be displayed on screen area 

 How many attributes can displayed per 

glyph. 

Lines show the position, direction and magnitude of 

a set of vectors. Given dataset with a sampled 

domain D we associate line l=(x, x+kv(x)) with 

every sample point xϵD that has a vector attribute 

v(x) and k represents the scaling factor used to map 

the vector magnitude to the geometric domain. 

Oriented line glyphs with spiky appearance are 

called hedgehogs. 

Line glyphs are scaled proportionally to the vector 

field magnitude, the scaling factor k being proportional to the subsampling rate. First, high-

resolution vector datasets must be subsample to visualize hedgehogs. Comparing Figures (a), (b), 

and (c), the last image is easier to comprehend the vector field where all glyphs have the same, 

relatively large size are easily perceivable. Use a unique glyph scaling factor k so that all glyphs 

are locally smaller than the cell size. 



 

Vector Glyphs: Cone and Arrow Glyphs 

Complex shapes like cones and arrow can be 

used as glyphs, had an advantage which 

convey signed direction. Line glyphs convey 

unsigned direction. Takes more space to draw 

but require low resolution data set. Can encode 

more attributes than vector field. Used in 

situations where correlations between several 

scalar and vector fields-CFD Simulations. By 

shading the line glyph from full color at the 

glyph origin to the background color at the line 

tip, a visual effect similar to a thin arrow can be obtained without the need for extra screen space. 

A 3D CFD solution consisting of flow velocity, vorticity, divergence and material density, 

pressure, and temperature offers 3 + 3 + 1 + 1 + 1 + 1 = 10 attributes per dataset point. 

Cone and arrow glyphs: Vector glyphs in 2D surfaces. 

Consider a zoomed-in detail showing a hedgehog plot over a single cell of a 2D vector field. 

The vector field variation over the displayed cell is quite small, the displayed arrow glyphs and 

arrive at the conclusion that the vector field has an upper-right direction and orientation, and 

increases in magnitude in this direction. Glyph techniques produce a purely discrete 

visualization. The task is made more difficult when we have to interpolate between directions 

and orientations, as in the case of vector glyphs. 

Vector Color Coding 

Develop dense visualizations for vector fields, similar to the color-mapped surfaces used for 

scalar fields. Similar to scalar color mapping, vector color coding associates a color with every 

point of a given surface on defined dataset. The color is used to encode the vector orientation and 

direction attributes. Colors in the HSV system can be visualized using a so-called color wheel, 

Every distinct hue corresponds to a different angle of the color wheel: red is 0◦, magenta is 60◦, 

blue is 120◦, cyan is 180◦, green is 240◦, and yellow is 300◦. Saturation is represented as the 

distance from the wheel center to a given color point.Value is usually represented as a separate 

one-dimensional “luminance” parameter, since the color wheel can encode only two distinct 

parameters 

Color coding on 2D surfaces 

Vector color coding for 2D vector fields proceeds by assuming a color wheel of unit radius. 

Under these conditions, every vector is represented by the color it points to, if we place it at the 

center of the color wheel. The vector orientation is encoded in the hue and the vector length in 

the value. The saturation parameter is set to one, i.e., we use only fully saturated colors. The 

color coding process is applied for every point of the dataset, similarly to the scalar color coding, 

either via texture or polygon color interpolation. Low-vector-magnitude regions can be easily 

detected as dark (low value) areas, whereas high-vector-magnitude regions show up as brightly 

colored areas. The inverse mapping from hue to vector orientation takes quite some time to be 

learned, so users have to be trained extensively to interpret such images. The directional color 

coding, we can also directly encode the vector components vx, vy, vz into colors. In this setting, a 

3D vector field is visualized by three separate scalar color-mapped fields. The user must visually 

correlate the same locations in three color images to get insight into the vector data at that 

location. Identify the location of the same spatial point in three different images, mentally 

performing three separate color-to-scalar mappings independently 

 



Displacement Plots 

The vector glyph with the origin at some point p can be seen as the trajectory p would follow in 

v(p) over a short time interval Δt. The vector glyph shows both the start and end points of the 

trajectory, i.e., p and p + v(p)Δt, respectively.  

Displacement plots take a different approach by showing only the end points of such trajectories. 

Given a surface S ∈ D inside the domain D of a vector field, where S is discretized as a set of 

sample points pi, a displacement plot of S is a new surface S` given by the set of sample points 

pi
`
 = pi + kv`(pi) 

 

Natural interpretation: 

The effect of displacing, or wrapping a given 

surface in the vector field are known as 

wrapped plots. 

Parameter settings: Values that are too small, 

on the other hand, do not show the warping 

effect strongly enough so that it is recognizable 

in the visualization and it lets the users map it 

back visually to a displacement value. 

 Parameter settings 

 First set the displacement factor k. 

 Values that are too large would warp the input surface too much, which can easily lead 

to self-intersecting surfaces. Large warp factors shift the displaced surface far away 

from its actual location. 

 Values too small do not show the warping effect strongly which recognizable in the 

visualization 

 Second is the shape and position of the surface to be warped. 

 Planar surfaces choice is for displacement plots 

 geometric objects can be used to create displacement plots 

 The visual difference between the expected shape of the original object and the 

perceived (deformed) shape serves as a cue for the vector magnitude. 

Texture-Based Vector Visualization 

Discrete visualizations cannot convey information about every point of a given dataset 

domain- Create a texture signal that encodes the direction and magnitude of vector field 

in various parameters like luminance, graininess, color and pattern structure. To encode 

the vector direction in the texture parameters is to use the texture graininess. 

Line integral convolution 

Consider an input texture N consisting of small-scale black-and-white noise defined over 

the domain of the 2D vector field. For each pixel p of this domain, we trace a streamline 

S(p, s) upstream and downstream through p for some maximal distance L. Here, s 

parameterizes the streamline. Next, we set the value T (p) of the output texture T at the 

current location p to be the weighted sum of the values of the input noise texture N 

measured along the streamline S(p) that passes through p. As a weighting function 

 k(s) : R → R+, we can use a Gaussian k(s) = e−
s2

 , or other functions that are 1 at the 

origin and decay smoothly and symmetrically from the origin until they reach near-zero 

values at the maximal distance L. The obtained value T (p) is T (p) =  

 



The denominator normalizes the weight factors for an arbitrary value of L .Applying this 

equation for all pixels using streamline lengths L of several pixels then we obtain a texture 

T whose pixel colors exhibit little variation among streamline and strong variation between 

neighbouring stream lines. Intuitively, we can think of this process as blurring, or filtering, 

the noise image along the streamlines with a set of filters k(s) that are aligned with the 

streamlines. The filtering operation can be seen as a convolution of the noise and filter 

functions N and k. Hence, this process is also known in the visualization field as line 

integral convolution. 

 

Domain Modeling Techniques 
 

Cutting: Extracting a Brick, Slicing in Structured Datasets, Implicit Function Cutting, 

Generalized Cutting 

Selection: Selecting cells, Thresholding, segmentation, and contouring,  

Grid Construction from Scattered Points: Triangulation Methods- Delaunay triangulations, 

Voronoi diagrams 

Domain- Modeling Techniques 
By domain-modeling techniques-operations on datasets that modify the sampling domain 

representation-grid.This modification does not change the reconstructed function, so the meaning 

of the data attributes stays the same, even though their internal representation may change. This 

can modify the actual values of the data attributes stored on a given grid-for example-resampling 

Cutting 

Cutting methods are domain-modeling techniques that map the data from a given source domain 

to a target subdomain.Consider some function f defined on a domain D is represented by a 

sampled “source” dataset Ds = ({pi}, {ci}, {fi}, {Φi}). Cutting the domain D with the domain D’ 

means,  resampling f from D to D’. This implies creating a new “target” dataset D’s = ({pi’}, 

{c’i}, {f’i}, {Φ’i}), D’s = ({pi’}, {c’i}, {f’i}, {Φ’i}). The grid points {p’i}, cells {c’i}, and 

interpolation functions {Φ’i} of the target dataset are all user specified, the user to say where to 

resample the source dataset.The cutting operation has several properties.  

First, the target domain is assumed to be a subset of the source domain. More exactly, we 

assume the points {pi’} of the target dataset to be contained in the cells {ci’} of the source 

dataset. Use convex cells in our datasets (see Section 3.4), this means that all cells {c’i} 

in the target dataset are also contained in the cells {ci} of the source dataset 

A second property of cutting is that the dimensionality of the source and target datasets, 

and hence the interpolation functions Φi and Φ’I of the two, need not be the same. 

Targetdim<= Sourcedim 

Cutting: Extracting a Brick: 

 

Extracting a brick, also called bricking 

or extracting a volume of interest (VOI), 

is a cutting operation that produces a 

target dataset with the same 

dimensionality as the source dataset. 

The target grid points are a subset of the 

source grid points, {p’i}∈{pi}.Uniform, 

structured, and rectilinear grids arrange 

their sample points in a regular axis-

aligned lattice where bricking takes 



advantage to implement cutting operation. For a d-dimensional dataset, we can identify every 

sample point by d integers n1,...,nd, called structured coordinates. Hence, we can easily specify 

the target domain as an axis-aligned “brick” contained in the source dataset, defined by its 

minimum and maximum integer coordinates (m1, M1),...,(md, Md), where 1 < mi < Mi < ni for 

all i ∈ [1, d]. This set of structured coordinates is called the brick extent. Given a dataset that has 

uniform, structured and rectilinear grid that produce a new dataset that has the same grid type. In 

the target dataset, copy all points, cells and corresponding data attributes that fall within the 

specified brick extent. 

Cutting: Slicing in Structured Datasets:  

We define a slice as all grid points that 

have one of the structured integer 

coordinates n1,...,nd equal. Extracting 

a slice can be seen as a bricking 

operation where the brick extent (m1, 

M1),...,(md, Md) is equal to the grid 

extent for d − 1 of the dimensions, 

except for the slicing axis s, where ms 

= Ms. Slicing a d-dimensional dataset generates a d − 1 dimensional dataset. 

Cutting: Implicit Function Cutting 

To cut an arbitrary dataset with a given lower-dimensional domain. A simple, yet powerful way 

to specify the cutting domain is to use implicit functions. Given some function φ : D → R, where 

D is the domain of the source dataset, we define the target, or cutting, domain as all points p ∈ D 

for which φ(p) = 0. 

 First, we compute a scalar dataset Dcut that has the same grid as the source dataset 

and that evaluates φ.  

 Second, we compute a contour of Dcut for the value zero 

Implicit equation of a plane Ax+By+ Cz+D = 0 with appropriate coefficients A, B, C, and D. By 

changing the coefficients, we can obtain slice planes oriented at arbitrary angles 

Cutting: Generalized Cutting 

Resample the source dataset attributes on this unstructured grid, using one of the available forms 

of interpolation (e.g., constant or linear), and we obtain the desired result 

The source attributes are interpolated at the locations of the target grid vertices (if the target 

dataset uses linear interpolation) or target grid cell centers (if the target dataset uses constant 

interpolation) 

Selection 

Selection methods extract the data from a source dataset based on data properties. 

Cutting enforces various geometrical and/or topological properties on the target domain, 

since the target grid is specified by the user, but cannot explicitly enforce any properties on the 

data values, as these are fully specified by the source dataset. Selection explicitly specifies which 

data values we are interested in, but cannot enforce, a certain topology and/or geometry of the 

shape or connectivity of the extracted dataset domain. Selection produces just a set of sample 

points and/or cells from the source dataset for which the data-based selection criterion holds. 

The simplest variant of selection produces a domain D’ that contains just the sample points 

whose data values meet the selection criterion D’= {p ∈ D|s(p) = true}. Here, s : D → B is a 

boolean function representing the user-specified selection operation based on the attributes of the 

point p 

Selection: Selecting cells 

 To extract cells, there are several ways to apply the selection criterion on a cell.  



 A cell can meet the selection criterion if one of its vertices, all vertices, or its center point 

meet the selection criterion as defined for a point. 

 The one-vertex criterion produces more cells, essentially selecting cells that are neighbors 

of the ones produced by the all-vertex selection criterion.  

 The center point criterion is equivalent to applying the one-point selection criterion on a 

slightly different sampling grid. 

 If cells are selected in the output dataset, we assume these to have the same interpolation 

functions as in the input dataset, since we just copied them from the input dataset. 

 The output dataset is assumed to have the same interpolation functions as the input 

dataset, since it is essentially just a subset of the input points and/or cells. 

 Depending on what we want to select (points or cells), we iterate over all the input 

dataset’s points or cells, apply the selection criterion, and copy the elements that pass the 

criterion to the output dataset, including their data attributes as well 

Selection: Thresholding, segmentation 

Selection based on the scalar value being larger or equal (or smaller or equal) than a 

given threshold s0 produces one (or more, depending on the data monotonicity) compact 

subsets of the input dataset, also called threshold sets. Such an operation is also known as 

thresholding or segmentation. A variant of segmentation tests the scalar value against a 

given value range [smin, smax]. scalar values that represent the luminance, or intensity, of 

an image, selecting data points based on the derivative values is related to edge-detection 

methods. Selection methods that implement are essentially local methods, in the sense 

that they treat each point or cell of the dataset separately. Nonlocal selection function can 

be described as a function s : D →D, where s(D) = D’⊂ D is the result of the selection 

applied on the domain D. Nonlocal selection operations occur when we must enforce the 

connectivity of the resulting domain D’.“select all connected components D’i ⊂ D from 

an input domain D where the scalar values exceed some threshold smin and whose size 

|D’i| exceeds some minimal size τmin. 

Selection: contouring 

Selecting all cells in a dataset whose data values are equal to a 

given target value τ is conceptually equivalent to producing a 

piecewise constant approximation of the contour at value τ. 

The contour is approximated by a set of cells, which gives it 

the blocky appearance visible in Figure.The marching squares 

and marching cubes algorithms will compute the same 

isosurface, but use a piecewise linear approximation. The 

contour is approximated by a set of planes (in 3D) or  lines (in 2D) 

Grid Construction from Scattered Points: Triangulation Methods- Delaunay 

triangulations:  

Triangulation methods are most-used class of methods for 

constructing grids from scattered points. Given a set of points 

pi (sometimes also called sites), a triangulation method 

produces a grid (pi, ci) by generating a set of cells ci that have 

the sample points pi as vertices. The cells ci form a tiling of 

the convex hull of the point set {pi}. In other words, 

triangulation methods produce a grid that samples a domain D 

identical to the convex hull of the triangulated point set. 

  

 



Delaunay triangulations 

This method generates triangular cells ci for a set of 2D points pi ∈ R
2
 and tetrahedra for a 

set of 3D points pi ∈ R
3
.A Delaunay triangulation of a point set consists of a set of triangles 

that covers the convex hull of the point set. An important property of a Delaunay 

triangulation is that no point from the input point set {pi} lies in the circumscribed circle of 

any triangle in the triangulation. Triangulations that obey this property are called 

conforming Delaunay triangulations. We define piecewise linear basis functions over the 

triangles contained in the unstructured grid generated by the Delaunay triangulation, and 

use these functions to interpolate the vertex data values. The point density is higher in the 

center, which causes the creation of smaller triangles in that area. 

 

Grid Construction from Scattered Points: Voronoi diagrams 

 

For every Delaunay triangulation, there exists an associated geometric structure called a Voronoi 

diagram.A Voronoi diagram consists of a set of convex polygonal cells in 2D and polyhedral 

cells in 3D.The vertices of the Voronoi cells are the centers of the circumscribed circles of the 

triangles present in the associated Delaunay triangulation. The edges of the Voronoi cells are line 

segments contained in the lines perpendicular to, and passing through, the midpoints of the edges 

of the triangles present in the associated Delaunay triangulation. The centers of the Voronoi cells 

are the vertices of the Delaunay triangulation, i.e., the given scattered points.Every location x in 

a Voronoi diagram is included in the Voronoi cell that has as center. Voronoi diagrams can be 

used to quickly find the closest point p from a given scattered point set to a given test location x 

e closest point p in the input point set {pi}. 

 

 


