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Fig.: Types of questions targeted by the visualization process 

 

The Visualization Pipeline 
Conceptual perspective: 

 The role of visualization is to create images that convey various types of insight into a 

given process. 

 The visualization process consists of the sequence of steps, or operations, that manipulate 

the data produced by the process under study and ultimately deliver the desired images 

 

Conceptual Perspective of Visualization process 

Functional view on the visualization pipeline 

Visualization Pipeline 

The visualization process consists of several stages. Each stage is modelled by a specific data 

transformation operation.  

The input data ―flows‖ through this pipeline, being transformed in various ways, until it 

generates the output images.  

Given this model, the sequence of data transformations that take place in the visualization 

process is often called the visualization pipeline.  

The visualization pipeline typically has four stages: data importing, data filtering and 

enrichment, data mapping, and data rendering 

On design level: Visualizations allows one to manage the complexity of the whole process 

On implementation level: construct visualizations by assembling reusable and modular 

data-processing operations 

Visualization pipeline as a function V is that maps between DI , the set of all possible types of 

raw input data, and the set I of produced images:   Vis : DI → I 

 

Also model this process by a function Insight, in inverse direction to the V is function: 

   Insight : I → DI  

Insight maps from the produced images to the actual questions the user has about the raw 

data 

Monitoring live process – need for users in changing its parameters.  

Applications provide close the loop between the visualization output and the application’s 

inputs. 

If the user completes round trip time effectively steers the process at hand by means of 

visual feedback. This process, called computational steering, 

 

Data Importing 

To import our input data into the visualization process. 



Functional terms: importing the input data maps the raw information DI that is available 

at the beginning of the visualization process to a dataset D ∈ D,  

    Import : DI → D 

D consists of uniform, rectilinear, structured, and unstructured datasets. 

 

Data Importing:  One-to-one mapping, Reading the input data from some external storage, 

Direct mapping, translating between different data storage formats, resampling the data from 

the continuous to discrete. Choice made during data importing determine the quality and 

effectiveness of visualization. Preserve available input information 

Data Filtering and Enrichment 

After importing, decision about important and interested features. Distil our raw dataset 

into more appropriate representations; also called enriched datasets that encode our 

features of interest in a more appropriate form for analysis and visualization. This process 

is called data filtering or data enriching. 

This process performs two tasks: On one hand, data is filtered to extract relevant 

information. On the other hand, data is enriched with higher-level information that 

supports a given task. 

Data filtering can be described by the function    Filter: D → D. 

Both the input (domain) and output (codomain) of the filtering function are datasets 

Contexts where filtering is important 

See what is relevant: medical specialists- CT or MRI scanners, financial analysts- 

stock prices 

Handle large data: Problem for efficient visualization: Limited output resolution 

* Solution- Subsampling(zooming)-subsets of pixels that captures the all 

characteristics of the complete dataset 

* Panning-selecting subset of the input image at its original resolution 

Ease of use:  Convenience and Need to transform – apply necessary operation 

 

Data Mapping 

The filtering operation produces an enriched dataset that should directly represent the features 

of interest for a specific exploration task. Visualization process -mapping can be modelled by 

the function      Map: D → DV     

This function takes a dataset D ∈ D and maps it to a dataset of visual features DV .The visual 

domain DV  is a multidimensional space whose axes, or dimensions, are those elements that 

we perceive as quasi-independent visual attribute. The visual feature is a colored, shaded, 

textured, and animated 2D or 3D shape. 

Map function: used in a specific application, depend on purpose of the visualization, 

specifics of the data, the preference of the designer of that visualization. Example: 

mapping 2D and 3D coordinates. The Direct and Inverse Mapping in the visualization 

process 

Why to extract visual features?   

 

 

 

 

 

 



 
 

 

Rendering is applying computer graphics techniques, such as coordinate transformations, 

lighting, texture mapping etc., Data mapping targets in making the invisible and 

multidimensional data visible and low-dimensional. In implementation practice, Filter and 

Import may be not invertible. 

if Map and Render are invertible, make judgments about the enriched datasets D that model 

our problem domain, using the rendered images, For example, a 3D scene rendered from a 

bad angle and with low lighting will produce an bad image  an image which does not tell us 

anything insightful. Map should be injective, it is invertible over its whole value range, which 

is what we want. 

 

Data Mapping:   

 Encodes explicit design decisions of what and how 

 Converts invisible data to visible representations 

 Specifies those attributes that encode actual data 

 

Rendering 

 Simulates the physical process to visible 3D scene 

 Specifies visual attributes to tune to their taste 

Modularity 

 Both operations implementation is complex and has numerous sub-steps 

 3D rendering libraries are reused in a visualization application once the rendering step is 

separated from the mapping step. 



 
Data Mapping  

Distance preservation 

 The distance d(x1, x2) between any two values x1 and x2 in the dataset D should suggest 

the distance d’(Map(x1), Map(x2)) in the visual feature dataset DV. 

 Linear Mapping: Numerical value to visual attribute 

 Measurement mappings: the empirical relations preserve and are preserved by the 

numerical relations 

 To map rainfall values: a color map that translates scalar values to hues that works 

 Organization levels: Types of operations that perform on variables. 

 Associative: if v allows a categorical attribute mapped by v to be perceived independently 

on the presence of other visual variables in the same image. Example: Shape 

Data Rendering 

 The final step of the visualization process. 

 Takes the 3D scene created by the mapping operation, together with several user specified 

viewing parameters such as the viewpoint and lighting, and renders it to produce the 

desired images:    Render : DV→ I 

 This allows users to interactively navigate and examine the rendered result of a given 

visualization by rendering the 3D scene without having to re-compute the mapping 

operation. 

 If the view point changes, mapping remains same but have to do render with new viewing 

parameters 

Implementation Perspective:  

 Visualization pipeline as a composition of functions that have dataset arguments and values.

    Vis = F1 ◦ F2 ◦ ... ◦ Fn, where Fi : D → D. 

Where Fi perform the data rendering, mapping, filtering, and importing and in inverse order 

This model allows us to decompose each of the four stages into many sub-functions. 

First, complex operations, such as filtering, in terms of a composition of simple filter-like 

atomic operations that each address a specific task.  

Second, this favors modular, reusable software design and allows us to assemble 

visualization applications from a set of predefined functional components. 

 Dataflow design: Implement the functions Fi as classes that have three properties: 

 They read one or more input datasets D
inp

 i .  

 They write one or more output datasets D
out

j .  

 They have an execute() operation that computes D
out

j given D
inp

 i.  

 The choice of letting the function F have several datasets as input (arguments) and output 

(results) 



 

 
 Input raw data into the pipeline, first execute F1 

 If the application graph is acyclic, the execution is equivalent to calling the execute() 

method of all operations Fi in the order of the topological sorting of the graph  

 The sequence of operation executions in the ―flow‖ of data from the importing operation 

to the final rendering operation. 

 Progressive updation and serialization 

 
Implementation Perspective 

 This application model follow the ―flow‖ of data from the importing operation to the final 

rendering operation, called a dataflow application model. 

 a visualization application can be implemented as a network of operation objects that 

have dataset objects as inputs and outputs. To execute the application, the operations are 

invoked in the dataflow order, starting with the data importing and ending with the 

rendering. 

 most notable additions:  

 reference counting  

 automatic memory management 

 ensure the dataset-operation compatibility, smart pipeline traversal, 

  parallelization-distribution of execution on one or several machines, 

  progressive update mechanisms that allow users to stop the pipeline execution at any 

desired moment 

  serialization facilities for both the datasets and the application  

Implementation Perspective 

Dataflow implementation:  

Visualization Toolkit (VTK)- a professional visualization framework in both academic and 

industrial contexts. 

 VTK is an open-source product, easily modified and embedded in different development. 

C++,Java, Python 

 VTK toolkit great flexibility, genericity, efficiency and price with complexity. 

 Insight Toolkit (ITK): general-purpose data visualization 

 ITK focuses on the more specific field of image segmentation, processing, and 

registration. 



  ITK can handle multidimensional images and offers algorithms for thresholding, edge 

detection, smoothing, denoising, distance computations, segmentation, and registration.  

 ITK offers the same wrapper concepts, open-source development model as VTK. 

Visual dataflow programming:  

 Constructs dataflow application – assembling iconic representations to visualize 

operations.  

 Icons - describing the operations- their inputs and outputs are connected by means of 

mouse manipulations.  

 Graphical user interfaces (GUIs) are provided by the environment to let users 

interactively control the parameters of the various visualization operations, achieving the 

goal of interactive data exploration. 

  When the user modifies such a parameter, the environment triggers a dataflow execution 

engine that updates the complete application network from the affected operations onward 

until a new image is rendered in the visualization window 

 
 

Fig.: The height-plot application in the VISSION application builder 

 

 
 

 

Fig.:The height-plot application in the MeVisLab application builder 

 

 



 
 

Fig.: A visualization application in the AVS application builder 

Simplified visual programming: 

 visual application builder is ParaView environment.  

 uses the VTK library and its underlying machinery to provide the actual implementation 

of visualization operations. 

 ParaView features a more beginner-friendly end-user interface.  

 Constructs application networks of fully general graph topology  

 GUI menus that is easier and faster to learn and use.  

 A similar trade-off of design freedom for utilization simplicity is used in other toolkits, 

such as MayaVi 

 Issues in visual programming environments are: 

 At initial stages rapid Prototyping of users with no programming skills. 

 Less effective for complex visualization applications 

 Need complex custom code to Intricate control flow 

 Structure of application changes Creation of final applications 

 Algorithm Classification 

 To start learning about number of specific visualization techniques with theoretical and 

practical parameters are called visualization algorithms 

 Schroeder et al. propose a structural classification that groups visualization techniques by 

the type of dataset ingredient they change.  

 Their classification includes  

 geometric techniques (that alter the geometry, or locations, of sample points),  

 topological techniques (that alter the grid cells),  

 attributes techniques (that alter the attributes only), and  

 combined techniques (that alter several of a dataset’s ingredients) 

Algorithm Classification 

 Marcus et al. in terms of a five-dimensional model containing the following dimensions: 

 Task: What is the task to be completed?  

  Audience: Which are the users?  

 Target: What is the data to visualize?  

 Medium: What is rendering (drawing) support?  

  Representation: What are the graphical attributes (shapes, colors, textures) used? 

 This classification is applicable not only for visualization algorithms but also for 

visualization Applications. 

 Many users think of (scientific) visualization methods in terms of scalar, vector, tensor, 

and domain modeling algorithms. 



Scalar Visualization 

 Visualizing scalar data is encountered in science, engineering, and medicine, but also in 

daily life.  

 scalar datasets, or scalar fields, represent functions f : D → R, where D is usually a subset 

of R
2
 or R

3
. There exist many scalar visualization techniques, both 2D and 3D datasets. 

 Color Mapping: associates a color with every scalar value, which is a mapping function  
m : D→DV 

 Not concerned with creating shapes to visualize data. 

 For every point of the domain of interest D,  

 color mapping applies a function c : R → Colors that assigns to that point a color c(s) ∈ 

Colors which depends on the scalar value s at that point. 

 Ways to define scalar-to-color function c 

Color look-up tables 

 Transfer function: A color look-up table C, also called a colormap, is a uniform 

sampling of the color-mapping function c: 

 A table of N colors c1,...,cN , which are associated with the scalar dataset values f, 

assumed to be in the range [fmin, fmax]. 

 The colors ci with low indices i in the colormap represent low scalar values close to fmin, 

whereas colors with indices close to N in the colormap represent high scalar values close 

to fmax. 

 Dataset values outside the prescribed range [fmin, fmax] are clamped to this range to 

yield valid colors in the given colormap 

 To visualize a time-dependent scalar field f(t) with t ∈ [tmin, tmax]. 

 Solution is to visualize the color-mapped values of the scalar field f(t) for consecutive 

values of t in [tmin, tmax]. 

 If the range [fmin(ti), fmax(ti)] of a time step ti ∈ [tmin, tmax] is much smaller than the absolute 

range [fmin, fmax], normalizing f to the absolute range at the individual frames.  

 Another solution is to normalize the scalar range separately for every time frame f(t). This 

implies drawing different color legends for every time frame. 

 colors are usually represented as triplets in either the RGB or HSV (hue-saturation-value) 

color systems, this is usually done by defining three scalar functions 

  cR : R → R, cG : R → R, and cB : R → R, whereby c = (cR, cG, cB). The functions  cR , 

cG, and cB are also called transfer functions. 

Designing Effective Colormaps 

 color-mapping visualization is effective if, by looking at the generated colors, we can 

easily and accurately make statements about the original scalar dataset that was color 

mapped. 

 Different analysis statements  and goals require different types of colormaps: 

1. Absolute values: Tell the absolute data values at all points in the displayed dataset. 

(absolute) 

2. Value ordering: Given two points in the displayed dataset, tell which of the 

corresponding two data values is greater. (large or small)  

3. Value difference: Given two points in the displayed dataset, tell what is the difference 

of data values at these points.(far apart)  

4. Selected values: Given a particular data value finterest, tell which points in the displayed 

data take the respective value finterest. A variation of this goal replaces finterest by a compact 

interval of data values. (chosen value) 

5. Value change: Tell the speed of change, or first derivative, of the data values at given 

points in the displayed dataset(quick change of values) 

 

Color Legends 



  Invert the color-mapping function c; that is, look at a color of some point in the visual 

domain DV and tell its scalar value f. 

 A color strip containing all the colors ci in our colormap, annotated with labels that 

indicate the values f for all or a number of the depicted colors.  

 By looking at an actual visualization and comparing its colors with the labeled colors in 

the colormap, we are able to infer the scalar values of the depicted dataset at desired 

points in the drawn image. 

 Color function c must be invertible. 

This function must be injective- every scalar value in the range  [fmin, fmax] is associated with 

a unique color. 

1. Able to map the colors to scalars using the color legend that can be perceived visually. 

2. Visually distinguish separate regions having different colors.(spatial resolution compared 

to the speed of variation of scalar data). 

Goal 1: Color legend is required to map a color to a data-related quantity. 

Goal 2: Color legend is required to tell how colors are ordered with respect to the ordering of 

the data values. 

Goal 3: Compare distances between data values 

Goal 4: Data points take a given value of interest 

Goal 5: tell the speed of data variation  the magnitude of the gradient ∇f of our scalar signal 

f, we then need a color legend for ∇f . 

Rainbow Color Map 

 Many engineering and weather forecast applications use a blue-to-red colormap, often 

called the rainbow colormap (see Figure 5.1).  

 This colormap is based on intuition that blue -‖cold‖ color and red – ―hot ― color. 

 construct a rainbow colormap using three transfer functions R, G, B 

 
Rainbow Color Map 

 Limitations of Rainbow colormap: 

 Focus: Warm colors attract attention more than cold colors. Depending on the application, 

these may not be the values where we want to focus on. 

 Luminance: In the figure the luminance is slightly increasing, respectively slightly 

decreasing luminance of the rainbow colormap entries vary non-monotonically. This leads 

to users being potentially attracted more to certain colors. This issue can be corrected by 

adjusting the rainbow colormap entries so that they use the same hues, but have maximal 

luminance. 

 Context: Hues can have application-dependent semantics. 

 Assumption of rainbow colormap is ―warm‖ colors, such as yellow and red, are perceived 

as being associated with higher data values, whereas ―cold‖ colors such as blue suggest 

low values. 

 Ordering: The rainbow colormap assumes that users can easily order hues from blue to 

green to yellow to red, such as used by this colormap. 



 • Linearity: Besides the colormap invertibility requirement, visualization applications 

often also require a linearity constraint to be satisfied. 

 
Gray Scale: 

 First, it directly encodes data into luminance, and thus is has no issues regarding the 

discrimination of different hues. 

  Second, color ordering is natural (from dark to bright), which helps goal 2. 

 Finally, rendering grayscale images is less sensitive to color reproduction variability 

issues when targeting a range of display or print devices. 

on the negative side, telling differences between two gray values, or addressing goal 3, is 

harder than when using hue-based colormaps. 

Two-hue: Figure (c) shows a two-hue colormap. The colormap entries are obtained by 

linearly interpolating between two user-selected colors, blue and yellow in our case. 

If the two colors used for interpolation are perceptually quite different , a disadvantage offers 

less dynamic range. 

 The disadvantage of this design is that less colors can be individually perceived, leading 

to challenges for goals 1, 4, and 5 

Heat map: Figure 5.2(d) shows a heated body colormap.  

 Colors is that they represent the color of an object heated at increasing temperature 

values, with black corresponding to low data values, red-orange hues for intermediate 

data ranges, and yellow-white hues for the high data values respectively. 

 Compared to the rainbow colormap, the heat map uses a smaller set of hues, but adds 

luminance as a way to order colors. 

 Compared to the two-hue colormap, the heat map uses more hues, thus allowing one to 

discriminate between more data values(using yellow at the highest end rather than white) 

  Not suitable for color shading data on 3D shaded surfaces due  strong dependence on 

luminance. 

 Combination of grayscale map and the heat map is a popular choice for medical data 

visualization. 

Diverging 

 Diverging: Figures 5.2(e,f) show two final colormap examples, known under the name of 

diverging, or double-ended scale, colormaps.  

 Diverging colormaps are constructed starting from two typically isoluminant hues, just as 

the isoluminant two-hue colormaps. However, rather than interpolating between the end 

colors cmin and cmax, we now add a third color cmid for the data value fmid = (fmin + fmax)/2 

located in the middle of the considered data range [fmin, fmax], and use two piecewise-

linear interpolations between cmin and cmid . 

 Figure(e) a diverging colormap with cmin = blue, cmax = red, and cmid = white. 

 Figure(f) used a diverging color map with cmin = green, cmax = red, and cmid = bright 

yellow. 



 Diverging colormaps consist of two two-hue colormaps for the left, respectively right, 

halves of the considered data range. 

 to emphasize the deviation of data values from the average value fmid, and also effectively 

support the task of assessing value differences. 

 
Zebra colormap: 

 To emphasize the variations of the data rather than absolute data values. 

 the continuous colormaps presented in Figure 5.2 on the magnitude of the gradient ∇f of 

our scalar dataset f. 

 the absolute value of our data’s rate of change, not the direction in which that rate of 

change is maximal. 

 use a colormap on the scalar dataset f containing two or more alternating colors that are 

perceptually very different. 

 In the left image, we visualize a scalar function f(x, y) = e−
10(x4+y4)

, whose shape is quite 

similar to the Gaussian. 

 Thin, dense stripes indicate regions of high variation speed of the function, whereas the 

flat areas in the center and at the periphery of the image indicate regions of slower 

variation 

 
Contouring 

 Color banding: Colormap design is the choice of the number of colors N. Choosing a 

small N would inevitably lead to the color banding effect. As the number of different 

colors in the look-up table decreases, equal color bands become visible in both the 

image and the color legend. Color banding is related to a different usage of color 

mapping—visualizing categorical data. 

 Color banding is related to fundamental and widely used visualization technique called 

contouring. 

 Meaning of the sharp color transitions that separate the color bands. 

 The transition between the yellow and orange bands; that is, all points in the figure that 

are on the border separating these two colors. 

 Associated color legend, points in the yellow band have scalar values s below 0.11, 

whereas the points in the orange band have scalar values s above 0.11. 

 The points located on the color border itself have the scalar value s = 0.11. 

 Points located on such a color border, drawn in black in Figure, are called a contour 

line, or isoline. Formally, a contour line C is defined as all points p in a dataset D that 

have the same scalar value, or isovalue s(p) = x, or   C(x) = {p ∈ D|s(p) = x}. 



 
 Areas where contours are closer to each other, such as in the center of the image, 

indicate higher variations of the scalar data. Indeed, the scalar distance between 

consecutive contours (which is constant) divided by the spatial distance between the 

same contours (which is not constant) is exactly the derivative of the scalar signal. 

Contour properties: 

 A two-variable function z = f(x, y) with the familiar elevation plot technique. Over the 

function graph, three isolines are drawn, for three different values, v0 (blue), v1 (red), 

and v2 (yellow). 

 First, isolines can be either closed curves, such as the yellow isoline or open curves. 

 Second an isoline can never intersect 

The scalar function and its isolines are viewed along the z-axis. The vector field displayed 

in the image shows the gradient of the scalar function. 

 
 The gradient of a function is the direction of the function’s maximal variation, 

whereas contours are points of equal function value, so the tangent to a contour is the 

direction of the function’s minimal (zero) variation. 

 These properties hold for a continuous dataset 

 

Height Plots 

 Height plots, also called elevation or carpet plots. 

 Given a two-dimensional surface Ds ∈ D, part of a scalar dataset D, height plots can be 

described by the mapping operation  

 m : Ds → D, m(x) = x + s(x)n(x), ∀x ∈ Ds, where s(x) is the scalar value of D at the 

point x and n(x) is the normal to the surface Ds at x. 

The height-plot mapping operation ―warps‖ a given surface Ds included in the dataset along 

the surface normal, with a factor proportional to the scalar values. 

    



 
 

 

 Consider a scalar dataset given by a function f : D → R, and its height plot given by the 

mapping  

 z(x, y) = sf(x, y), for all points (x, y) ∈ D. Here, s > 0 is the plot’s scaling factor. 

 Here, s > 0 is the plot’s scaling factor. Figure (a) can view the height plot from above, 

looking along the −z-axis. 

 Next, instead of the linear mapping z = sf, we use a non-linear mapping given by 

 z(x, y) = sf(x, y) + sh g (f(x, y) mod h/h) where g(u) = au(1−u) is a parabolic function 

to add parabolic bumps of height a to consecutive intervals in the range of f of size h. The 

parameter a ∈ [0, 1] sets the strength of the bump effect. The parameter h controls how 

―thick‖ the resulting bands are, and is similar in function to the distance between consecutive 

contours in isoline plots. 


