
UNIT-2
Contents

* The Visualization Pipeline:
 Conceptual Perspective: Importing

Data, Data Filtering and Enrichment,
Mapping Data, Rendering Data

 Implementation Perspective: Dataflow
design, Dataflow implementation,
Algorithm Classification

* Scalar Visualization:
 Color Mapping,
 Designing Effective Color maps: Goals,

Color legends, Rainbow color map and
other color map designs-Gray scale,
Two hue, Heat map, Diverging and
Zebra color map,

 Contouring: Contour properties, Height
Plots: Enridged plots

Fig.: Types of questions targeted by the visualization process

The Visualization Pipeline
Conceptual perspective:

 The role of visualization is to create images that convey various types of insight into a

given process.

 The visualization process consists of the sequence of steps, or operations, that manipulate

the data produced by the process under study and ultimately deliver the desired images

Conceptual Perspective of Visualization process

Functional view on the visualization pipeline

Visualization Pipeline

The visualization process consists of several stages. Each stage is modelled by a specific data

transformation operation.

The input data ―flows‖ through this pipeline, being transformed in various ways, until it

generates the output images.

Given this model, the sequence of data transformations that take place in the visualization

process is often called the visualization pipeline.

The visualization pipeline typically has four stages: data importing, data filtering and

enrichment, data mapping, and data rendering

On design level: Visualizations allows one to manage the complexity of the whole process

On implementation level: construct visualizations by assembling reusable and modular

data-processing operations

Visualization pipeline as a function V is that maps between DI , the set of all possible types of

raw input data, and the set I of produced images: Vis : DI → I

Also model this process by a function Insight, in inverse direction to the V is function:

 Insight : I → DI

Insight maps from the produced images to the actual questions the user has about the raw

data

Monitoring live process – need for users in changing its parameters.

Applications provide close the loop between the visualization output and the application’s

inputs.

If the user completes round trip time effectively steers the process at hand by means of

visual feedback. This process, called computational steering,

Data Importing

To import our input data into the visualization process.

Functional terms: importing the input data maps the raw information DI that is available

at the beginning of the visualization process to a dataset D ∈ D,

 Import : DI → D

D consists of uniform, rectilinear, structured, and unstructured datasets.

Data Importing: One-to-one mapping, Reading the input data from some external storage,

Direct mapping, translating between different data storage formats, resampling the data from

the continuous to discrete. Choice made during data importing determine the quality and

effectiveness of visualization. Preserve available input information

Data Filtering and Enrichment

After importing, decision about important and interested features. Distil our raw dataset

into more appropriate representations; also called enriched datasets that encode our

features of interest in a more appropriate form for analysis and visualization. This process

is called data filtering or data enriching.

This process performs two tasks: On one hand, data is filtered to extract relevant

information. On the other hand, data is enriched with higher-level information that

supports a given task.

Data filtering can be described by the function Filter: D → D.

Both the input (domain) and output (codomain) of the filtering function are datasets

Contexts where filtering is important

See what is relevant: medical specialists- CT or MRI scanners, financial analysts-

stock prices

Handle large data: Problem for efficient visualization: Limited output resolution

* Solution- Subsampling(zooming)-subsets of pixels that captures the all

characteristics of the complete dataset

* Panning-selecting subset of the input image at its original resolution

Ease of use: Convenience and Need to transform – apply necessary operation

Data Mapping

The filtering operation produces an enriched dataset that should directly represent the features

of interest for a specific exploration task. Visualization process -mapping can be modelled by

the function Map: D → DV

This function takes a dataset D ∈ D and maps it to a dataset of visual features DV .The visual

domain DV is a multidimensional space whose axes, or dimensions, are those elements that

we perceive as quasi-independent visual attribute. The visual feature is a colored, shaded,

textured, and animated 2D or 3D shape.

Map function: used in a specific application, depend on purpose of the visualization,

specifics of the data, the preference of the designer of that visualization. Example:

mapping 2D and 3D coordinates. The Direct and Inverse Mapping in the visualization

process

Why to extract visual features?

Rendering is applying computer graphics techniques, such as coordinate transformations,

lighting, texture mapping etc., Data mapping targets in making the invisible and

multidimensional data visible and low-dimensional. In implementation practice, Filter and

Import may be not invertible.

if Map and Render are invertible, make judgments about the enriched datasets D that model

our problem domain, using the rendered images, For example, a 3D scene rendered from a

bad angle and with low lighting will produce an bad image an image which does not tell us

anything insightful. Map should be injective, it is invertible over its whole value range, which

is what we want.

Data Mapping:

 Encodes explicit design decisions of what and how

 Converts invisible data to visible representations

 Specifies those attributes that encode actual data

Rendering

 Simulates the physical process to visible 3D scene

 Specifies visual attributes to tune to their taste

Modularity

 Both operations implementation is complex and has numerous sub-steps

 3D rendering libraries are reused in a visualization application once the rendering step is

separated from the mapping step.

Data Mapping

Distance preservation

 The distance d(x1, x2) between any two values x1 and x2 in the dataset D should suggest

the distance d’(Map(x1), Map(x2)) in the visual feature dataset DV.

 Linear Mapping: Numerical value to visual attribute

 Measurement mappings: the empirical relations preserve and are preserved by the

numerical relations

 To map rainfall values: a color map that translates scalar values to hues that works

 Organization levels: Types of operations that perform on variables.

 Associative: if v allows a categorical attribute mapped by v to be perceived independently

on the presence of other visual variables in the same image. Example: Shape

Data Rendering

 The final step of the visualization process.

 Takes the 3D scene created by the mapping operation, together with several user specified

viewing parameters such as the viewpoint and lighting, and renders it to produce the

desired images: Render : DV→ I

 This allows users to interactively navigate and examine the rendered result of a given

visualization by rendering the 3D scene without having to re-compute the mapping

operation.

 If the view point changes, mapping remains same but have to do render with new viewing

parameters

Implementation Perspective:

 Visualization pipeline as a composition of functions that have dataset arguments and values.

 Vis = F1 ◦ F2 ◦ ... ◦ Fn, where Fi : D → D.

Where Fi perform the data rendering, mapping, filtering, and importing and in inverse order

This model allows us to decompose each of the four stages into many sub-functions.

First, complex operations, such as filtering, in terms of a composition of simple filter-like

atomic operations that each address a specific task.

Second, this favors modular, reusable software design and allows us to assemble

visualization applications from a set of predefined functional components.

 Dataflow design: Implement the functions Fi as classes that have three properties:

 They read one or more input datasets D
inp

 i .

 They write one or more output datasets D
out

j .

 They have an execute() operation that computes D
out

j given D
inp

 i.

 The choice of letting the function F have several datasets as input (arguments) and output

(results)

 Input raw data into the pipeline, first execute F1

 If the application graph is acyclic, the execution is equivalent to calling the execute()

method of all operations Fi in the order of the topological sorting of the graph

 The sequence of operation executions in the ―flow‖ of data from the importing operation

to the final rendering operation.

 Progressive updation and serialization

Implementation Perspective

 This application model follow the ―flow‖ of data from the importing operation to the final

rendering operation, called a dataflow application model.

 a visualization application can be implemented as a network of operation objects that

have dataset objects as inputs and outputs. To execute the application, the operations are

invoked in the dataflow order, starting with the data importing and ending with the

rendering.

 most notable additions:

 reference counting

 automatic memory management

 ensure the dataset-operation compatibility, smart pipeline traversal,

 parallelization-distribution of execution on one or several machines,

 progressive update mechanisms that allow users to stop the pipeline execution at any

desired moment

 serialization facilities for both the datasets and the application

Implementation Perspective

Dataflow implementation:

Visualization Toolkit (VTK)- a professional visualization framework in both academic and

industrial contexts.

 VTK is an open-source product, easily modified and embedded in different development.

C++,Java, Python

 VTK toolkit great flexibility, genericity, efficiency and price with complexity.

 Insight Toolkit (ITK): general-purpose data visualization

 ITK focuses on the more specific field of image segmentation, processing, and

registration.

 ITK can handle multidimensional images and offers algorithms for thresholding, edge

detection, smoothing, denoising, distance computations, segmentation, and registration.

 ITK offers the same wrapper concepts, open-source development model as VTK.

Visual dataflow programming:

 Constructs dataflow application – assembling iconic representations to visualize

operations.

 Icons - describing the operations- their inputs and outputs are connected by means of

mouse manipulations.

 Graphical user interfaces (GUIs) are provided by the environment to let users

interactively control the parameters of the various visualization operations, achieving the

goal of interactive data exploration.

 When the user modifies such a parameter, the environment triggers a dataflow execution

engine that updates the complete application network from the affected operations onward

until a new image is rendered in the visualization window

Fig.: The height-plot application in the VISSION application builder

Fig.:The height-plot application in the MeVisLab application builder

Fig.: A visualization application in the AVS application builder

Simplified visual programming:

 visual application builder is ParaView environment.

 uses the VTK library and its underlying machinery to provide the actual implementation

of visualization operations.

 ParaView features a more beginner-friendly end-user interface.

 Constructs application networks of fully general graph topology

 GUI menus that is easier and faster to learn and use.

 A similar trade-off of design freedom for utilization simplicity is used in other toolkits,

such as MayaVi

 Issues in visual programming environments are:

 At initial stages rapid Prototyping of users with no programming skills.

 Less effective for complex visualization applications

 Need complex custom code to Intricate control flow

 Structure of application changes Creation of final applications

 Algorithm Classification

 To start learning about number of specific visualization techniques with theoretical and

practical parameters are called visualization algorithms

 Schroeder et al. propose a structural classification that groups visualization techniques by

the type of dataset ingredient they change.

 Their classification includes

 geometric techniques (that alter the geometry, or locations, of sample points),

 topological techniques (that alter the grid cells),

 attributes techniques (that alter the attributes only), and

 combined techniques (that alter several of a dataset’s ingredients)

Algorithm Classification

 Marcus et al. in terms of a five-dimensional model containing the following dimensions:

 Task: What is the task to be completed?

 Audience: Which are the users?

 Target: What is the data to visualize?

 Medium: What is rendering (drawing) support?

 Representation: What are the graphical attributes (shapes, colors, textures) used?

 This classification is applicable not only for visualization algorithms but also for

visualization Applications.

 Many users think of (scientific) visualization methods in terms of scalar, vector, tensor,

and domain modeling algorithms.

Scalar Visualization

 Visualizing scalar data is encountered in science, engineering, and medicine, but also in

daily life.

 scalar datasets, or scalar fields, represent functions f : D → R, where D is usually a subset

of R
2
 or R

3
. There exist many scalar visualization techniques, both 2D and 3D datasets.

 Color Mapping: associates a color with every scalar value, which is a mapping function
m : D→DV

 Not concerned with creating shapes to visualize data.

 For every point of the domain of interest D,

 color mapping applies a function c : R → Colors that assigns to that point a color c(s) ∈

Colors which depends on the scalar value s at that point.

 Ways to define scalar-to-color function c

Color look-up tables

 Transfer function: A color look-up table C, also called a colormap, is a uniform

sampling of the color-mapping function c:

 A table of N colors c1,...,cN , which are associated with the scalar dataset values f,

assumed to be in the range [fmin, fmax].

 The colors ci with low indices i in the colormap represent low scalar values close to fmin,

whereas colors with indices close to N in the colormap represent high scalar values close

to fmax.

 Dataset values outside the prescribed range [fmin, fmax] are clamped to this range to

yield valid colors in the given colormap

 To visualize a time-dependent scalar field f(t) with t ∈ [tmin, tmax].

 Solution is to visualize the color-mapped values of the scalar field f(t) for consecutive

values of t in [tmin, tmax].

 If the range [fmin(ti), fmax(ti)] of a time step ti ∈ [tmin, tmax] is much smaller than the absolute

range [fmin, fmax], normalizing f to the absolute range at the individual frames.

 Another solution is to normalize the scalar range separately for every time frame f(t). This

implies drawing different color legends for every time frame.

 colors are usually represented as triplets in either the RGB or HSV (hue-saturation-value)

color systems, this is usually done by defining three scalar functions

 cR : R → R, cG : R → R, and cB : R → R, whereby c = (cR, cG, cB). The functions cR ,

cG, and cB are also called transfer functions.

Designing Effective Colormaps

 color-mapping visualization is effective if, by looking at the generated colors, we can

easily and accurately make statements about the original scalar dataset that was color

mapped.

 Different analysis statements and goals require different types of colormaps:

1. Absolute values: Tell the absolute data values at all points in the displayed dataset.

(absolute)

2. Value ordering: Given two points in the displayed dataset, tell which of the

corresponding two data values is greater. (large or small)

3. Value difference: Given two points in the displayed dataset, tell what is the difference

of data values at these points.(far apart)

4. Selected values: Given a particular data value finterest, tell which points in the displayed

data take the respective value finterest. A variation of this goal replaces finterest by a compact

interval of data values. (chosen value)

5. Value change: Tell the speed of change, or first derivative, of the data values at given

points in the displayed dataset(quick change of values)

Color Legends

 Invert the color-mapping function c; that is, look at a color of some point in the visual

domain DV and tell its scalar value f.

 A color strip containing all the colors ci in our colormap, annotated with labels that

indicate the values f for all or a number of the depicted colors.

 By looking at an actual visualization and comparing its colors with the labeled colors in

the colormap, we are able to infer the scalar values of the depicted dataset at desired

points in the drawn image.

 Color function c must be invertible.

This function must be injective- every scalar value in the range [fmin, fmax] is associated with

a unique color.

1. Able to map the colors to scalars using the color legend that can be perceived visually.

2. Visually distinguish separate regions having different colors.(spatial resolution compared

to the speed of variation of scalar data).

Goal 1: Color legend is required to map a color to a data-related quantity.

Goal 2: Color legend is required to tell how colors are ordered with respect to the ordering of

the data values.

Goal 3: Compare distances between data values

Goal 4: Data points take a given value of interest

Goal 5: tell the speed of data variation the magnitude of the gradient ∇f of our scalar signal

f, we then need a color legend for ∇f .

Rainbow Color Map

 Many engineering and weather forecast applications use a blue-to-red colormap, often

called the rainbow colormap (see Figure 5.1).

 This colormap is based on intuition that blue -‖cold‖ color and red – ―hot ― color.

 construct a rainbow colormap using three transfer functions R, G, B

Rainbow Color Map

 Limitations of Rainbow colormap:

 Focus: Warm colors attract attention more than cold colors. Depending on the application,

these may not be the values where we want to focus on.

 Luminance: In the figure the luminance is slightly increasing, respectively slightly

decreasing luminance of the rainbow colormap entries vary non-monotonically. This leads

to users being potentially attracted more to certain colors. This issue can be corrected by

adjusting the rainbow colormap entries so that they use the same hues, but have maximal

luminance.

 Context: Hues can have application-dependent semantics.

 Assumption of rainbow colormap is ―warm‖ colors, such as yellow and red, are perceived

as being associated with higher data values, whereas ―cold‖ colors such as blue suggest

low values.

 Ordering: The rainbow colormap assumes that users can easily order hues from blue to

green to yellow to red, such as used by this colormap.

 • Linearity: Besides the colormap invertibility requirement, visualization applications

often also require a linearity constraint to be satisfied.

Gray Scale:

 First, it directly encodes data into luminance, and thus is has no issues regarding the

discrimination of different hues.

 Second, color ordering is natural (from dark to bright), which helps goal 2.

 Finally, rendering grayscale images is less sensitive to color reproduction variability

issues when targeting a range of display or print devices.

on the negative side, telling differences between two gray values, or addressing goal 3, is

harder than when using hue-based colormaps.

Two-hue: Figure (c) shows a two-hue colormap. The colormap entries are obtained by

linearly interpolating between two user-selected colors, blue and yellow in our case.

If the two colors used for interpolation are perceptually quite different , a disadvantage offers

less dynamic range.

 The disadvantage of this design is that less colors can be individually perceived, leading

to challenges for goals 1, 4, and 5

Heat map: Figure 5.2(d) shows a heated body colormap.

 Colors is that they represent the color of an object heated at increasing temperature

values, with black corresponding to low data values, red-orange hues for intermediate

data ranges, and yellow-white hues for the high data values respectively.

 Compared to the rainbow colormap, the heat map uses a smaller set of hues, but adds

luminance as a way to order colors.

 Compared to the two-hue colormap, the heat map uses more hues, thus allowing one to

discriminate between more data values(using yellow at the highest end rather than white)

 Not suitable for color shading data on 3D shaded surfaces due strong dependence on

luminance.

 Combination of grayscale map and the heat map is a popular choice for medical data

visualization.

Diverging

 Diverging: Figures 5.2(e,f) show two final colormap examples, known under the name of

diverging, or double-ended scale, colormaps.

 Diverging colormaps are constructed starting from two typically isoluminant hues, just as

the isoluminant two-hue colormaps. However, rather than interpolating between the end

colors cmin and cmax, we now add a third color cmid for the data value fmid = (fmin + fmax)/2

located in the middle of the considered data range [fmin, fmax], and use two piecewise-

linear interpolations between cmin and cmid .

 Figure(e) a diverging colormap with cmin = blue, cmax = red, and cmid = white.

 Figure(f) used a diverging color map with cmin = green, cmax = red, and cmid = bright

yellow.

 Diverging colormaps consist of two two-hue colormaps for the left, respectively right,

halves of the considered data range.

 to emphasize the deviation of data values from the average value fmid, and also effectively

support the task of assessing value differences.

Zebra colormap:

 To emphasize the variations of the data rather than absolute data values.

 the continuous colormaps presented in Figure 5.2 on the magnitude of the gradient ∇f of

our scalar dataset f.

 the absolute value of our data’s rate of change, not the direction in which that rate of

change is maximal.

 use a colormap on the scalar dataset f containing two or more alternating colors that are

perceptually very different.

 In the left image, we visualize a scalar function f(x, y) = e−
10(x4+y4)

, whose shape is quite

similar to the Gaussian.

 Thin, dense stripes indicate regions of high variation speed of the function, whereas the

flat areas in the center and at the periphery of the image indicate regions of slower

variation

Contouring

 Color banding: Colormap design is the choice of the number of colors N. Choosing a

small N would inevitably lead to the color banding effect. As the number of different

colors in the look-up table decreases, equal color bands become visible in both the

image and the color legend. Color banding is related to a different usage of color

mapping—visualizing categorical data.

 Color banding is related to fundamental and widely used visualization technique called

contouring.

 Meaning of the sharp color transitions that separate the color bands.

 The transition between the yellow and orange bands; that is, all points in the figure that

are on the border separating these two colors.

 Associated color legend, points in the yellow band have scalar values s below 0.11,

whereas the points in the orange band have scalar values s above 0.11.

 The points located on the color border itself have the scalar value s = 0.11.

 Points located on such a color border, drawn in black in Figure, are called a contour

line, or isoline. Formally, a contour line C is defined as all points p in a dataset D that

have the same scalar value, or isovalue s(p) = x, or C(x) = {p ∈ D|s(p) = x}.

 Areas where contours are closer to each other, such as in the center of the image,

indicate higher variations of the scalar data. Indeed, the scalar distance between

consecutive contours (which is constant) divided by the spatial distance between the

same contours (which is not constant) is exactly the derivative of the scalar signal.

Contour properties:

 A two-variable function z = f(x, y) with the familiar elevation plot technique. Over the

function graph, three isolines are drawn, for three different values, v0 (blue), v1 (red),

and v2 (yellow).

 First, isolines can be either closed curves, such as the yellow isoline or open curves.

 Second an isoline can never intersect

The scalar function and its isolines are viewed along the z-axis. The vector field displayed

in the image shows the gradient of the scalar function.

 The gradient of a function is the direction of the function’s maximal variation,

whereas contours are points of equal function value, so the tangent to a contour is the

direction of the function’s minimal (zero) variation.

 These properties hold for a continuous dataset

Height Plots

 Height plots, also called elevation or carpet plots.

 Given a two-dimensional surface Ds ∈ D, part of a scalar dataset D, height plots can be

described by the mapping operation

 m : Ds → D, m(x) = x + s(x)n(x), ∀x ∈ Ds, where s(x) is the scalar value of D at the

point x and n(x) is the normal to the surface Ds at x.

The height-plot mapping operation ―warps‖ a given surface Ds included in the dataset along

the surface normal, with a factor proportional to the scalar values.

 Consider a scalar dataset given by a function f : D → R, and its height plot given by the

mapping

 z(x, y) = sf(x, y), for all points (x, y) ∈ D. Here, s > 0 is the plot’s scaling factor.

 Here, s > 0 is the plot’s scaling factor. Figure (a) can view the height plot from above,

looking along the −z-axis.

 Next, instead of the linear mapping z = sf, we use a non-linear mapping given by

 z(x, y) = sf(x, y) + sh g (f(x, y) mod h/h) where g(u) = au(1−u) is a parabolic function

to add parabolic bumps of height a to consecutive intervals in the range of f of size h. The

parameter a ∈ [0, 1] sets the strength of the bump effect. The parameter h controls how

―thick‖ the resulting bands are, and is similar in function to the distance between consecutive

contours in isoline plots.

