
Web TECHNOLOGIES

1 JSP

Unit – 5 JSP

JSP: JSP architecture, Life Cycle, Creating Simple JSP Pages, JSP Basic tags, Implicit

Objects.

.

Problems with Servlets

 Servlets need a special "servlet container" to run servlets.

 Servlets need a Java Runtime Environment on the server to

run servlets.

 For developing Servlet based application, knowledge of java

as well as HTML code is necessary.

 The servlet has to do various tasks such as acceptance of

request, processing of request, handling of business logic and

generation of response.

 In many Java servlet-based applications, processing the

request and generating the response are both handled by a

single servlet class.

An example servlet looks like this:

public class OrderServlet extends HttpServlet

 {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

if (isOrderInfoValid(request)) {

saveOrderInfo(request);

out.println("<html>");

Web TECHNOLOGIES

2 JSP

out.println(" <head>");

out.println(" <title>Order Confirmation</title>");

out.println(" </head>");

out.println(" <body>");

out.println(" <h1>Order Confirmation</h1>");

renderOrderInfo(request);

out.println(" </body>");

out.println("</html>");

}

 }

The pure servlet-based approach still has a few problems:

 Detailed Java programming knowledge is needed to develop and

maintain all aspects of the application, since the processing code

and the HTML elements are lumped together.

 Changing the look and feel of the application, or adding support

for a new type of client (such as a WML client), requires the

servlet code to be updated and recompiled.

 It's hard to take advantage of web page development tools when

designing the application interface. If such tools are used to

develop the web page layout, the generated HTML must then be

manually embedded into the servlet code, a process that is time-

consuming and error-prone

JSP lets you solve these problems “by separating the request

processing and business logic code from the presentation”, as

illustrated in Figure 1.1. Instead of embedding HTML in the code, you

place all static HTML in JSP pages, just as in a regular web page, and

Web TECHNOLOGIES

3 JSP

add a few JSP elements to generate the dynamic parts of the page.

The request processing can remain the domain of servlet

programmers, and the business logic can be handled by JavaBeans

and Enterprise JavaBeans (EJB) components.

Figure 1.1. Separation of request processing, business logic, and

presentation

Web TECHNOLOGIES

4 JSP

Advantages of JSP:

 Separating the request processing and business logic from

presentation makes it possible to divide the development

tasks among people with different skills. Java programmers

implement the request processing and business logic pieces,

web page authors implement the user interface, and both

groups can use best-of-breed development tools for the task

at hand. The result is a much more productive development

process.

 It also makes it possible to change different aspects of the

application independently, such as changing the business

rules without touching the user interface.

 This model has clear benefits even for a web page author

without programming skills who is working alone. A page

author can develop web applications with many dynamic

features, using generic Java components provided by open

source projects or commercial companies.

Web TECHNOLOGIES

5 JSP

 It provides a very powerful and flexible mechanism to produce

dynamic web pages.

 Dynamic contents can be handled using JSP because JSP

allows scripting and element based programming.

 JSP allows creating and using our own custom tag libraries.

Hence any application specific requirements can be satisfied

using custom tag libraries. This helps the developer to

develop any kind of application.

 JSP is an essential component of J2EE. Hence using JSP it is

possible to develop simple as well as complex applications.

 In JSP we can directly embed java code into html code but in

servlet is not possible.

 JSP page is automatically compiled but servlet will manually

redeploy.

 In jsp implicit objects are presents which is we can implement

directly into jsp pages but in servlet there are no implicit

objects.

Introduction to JSP
JSP Overview

 JavaServer Pages (JSP) is a server-side programming

technology that enables the creation of dynamic, platform-

independent method for building Web-based applications.

 JavaServer Pages (JSP) is a technology for developing web

pages that support dynamic content which helps developers

insert java code in HTML pages by making use of special JSP

tags, most of which start with <% and end with %>.

 JSP is a specification and not a product.Hence developers

can develop variety of applications and add up to performance

Web TECHNOLOGIES

6 JSP

and quality of software products.It is essential component of

J2EE.

 A JavaServer Pages component is a type of Java servlet that

is designed to fulfill the role of a user interface for a Java web

application. Web developers write JSPs as text files that

combine HTML or XHTML code, XML elements, and

embedded JSP actions and commands.

 Using JSP, you can collect input from users through web page

forms, present records from a database or another source,

and create web pages dynamically.

 JSP tags can be used for a variety of purposes, such as

retrieving information from a database or registering user

preferences, accessing JavaBeans components, passing

control between pages and sharing information between

requests, pages etc.

Why Use JSP?

 Performance is significantly better because JSP allows

embedding Dynamic Elements in HTML Pages itself.

 JSP allows to separate the presentation logic and business

logic

 JSP are always compiled before it's processed by the server

 JavaServer Pages are built on top of the Java Servlets API,

so like Servlets, JSP also has access to all the powerful

Enterprise Java APIs, including JDBC, EJB, JAXP etc.

 JSP pages can be used in combination with servlets that

handle the business logic, the model supported by Java

servlet template engines.

JSP ARCHITECTURE
Anatomy of a JSP page

Web TECHNOLOGIES

7 JSP

JSP page is simply a regular web page with JSP elements for

generating the parts of the page that differ for each request.

The JSP Page consists of 2 parts:

i) Template text

ii) JSP Elements

i) Template Text:

Everything in the page that is not a JSP element is called template

text. Template text can really be any text: HTML, WML, XML, or even

plain text. Template text is always passed straight through to the

browser.

Figure 1.2. Template text and JSP elements

<%@ page import="java.util.*;" %> JSP

Element

<html>

<body>

Template Text

<h1>Hello World!</h1>

<%

out.println("Today's Date Is:");

Date d=new Date(); JSP

Element

out.println(d);

%>

</body>

</html> Template

Text

OUTPUT:

Web TECHNOLOGIES

8 JSP

When a JSP page request is processed, the template text and the

dynamic content generated by the JSP elements are merged, and the

result is sent as the response to the browser.

ii) JSP Elements:

There are three types of elements with Java Server Pages:

Directive,
Aaction, and
Scripting Elements.

(Additional Elements are JSP Implicit Objects)

The Directive elements, shown in Table 1.1, are used to specify

information about the page itself that remains the same between page

requests, for example, the scripting language used in the page,

whether session tracking is required, and the name of a page that

should be used to report errors, if any.

Table 1.1 Directive elements

Web TECHNOLOGIES

9 JSP

Action elements typically perform some action based on information

that is required at the exact time the JSP page is requested by a

client. An action element can, for instance, access parameters sent

with the request to do a database lookup. It can also dynamically

generate HTML, such as a table filled with information retrieved from

an external system. The JSP specification defines a few standard

action elements, listed in Table 1.2, and includes a framework for

developing custom action elements. A custom action element can be

developed by a programmer to extend the JSP language.

Table 1.2 Action Elements

Scripting elements, shown in Table 1.3, allow you to add small

pieces of code to a JSP page, such as an if statement to generate

different HTML depending on a certain condition. Like actions, they

are also executed when the page is requested. Scripting elements

must be used with extreme care: if you embed too much code in your

Web TECHNOLOGIES

10 JSP

JSP pages, you will end up with the same kind of maintenance

problems as with servlets embedding HTML

1. Scriptlets

2. Expressions

3. Declarations

Table 1.3 Scripting elements

LIFE CYCLE
 JSP Processing/ Life Cycle of JSP:

A JSP page cannot be sent as-is to the browser; all JSP elements

must first be processed by the server. This is done by turning the JSP

page into a servlet, and then executing the servlet.

JSP Container:

Just as a web server needs a servlet container to provide an interface

to servlets, the server needs a JSP container to process JSP pages.

The JSP container is often implemented as a servlet configured to

handle all requests for JSP pages. In fact, these two containers - a

servlet container and a JSP container - are often combined into one

package under the name web container.

JSP Processing is done in 2 phases:

i) Translation Phase

ii) Request Processing Phase

Web TECHNOLOGIES

11 JSP

i) Translation Phase:

A JSP container is responsible for converting the JSP page into a

servlet (known as the JSP page implementation class) and compiling

the servlet. These two steps form the translation phase . The JSP

container automatically initiates the translation phase for a page when

the first request for the page is received. The translation phase can

also be initiated explicitly; this is referred to as precompilation of a JSP

page.

When a JSP container receives a jsp request, it checks for the jsp’s

servlet instance. If no servlet instance is available, then, the container

creates the servlet instance using following stages.

 Translation

 Compilation

 Loading

 Instantiation

 Initialization

Translation - In this step the JSP page is translated into the

corresponding Servlet.

Compilation - Once the JSP page has been translated into the

corresponding Servlet, the next obvious step is to compile that Servlet.

Loading & Instantiation - As is the case with any compiled class

(.class file), this servlet class also needs to be loaded into the memory

before being used. The default class loader of the Container will load

this class. Once the class is loaded, an instance of this class gets

created.

Initialization: JspPage interface contains the jspInit() method, which is

used by the JSP container to initialize the newly created instance.

This jspInit() method is just like the init()method of the Servlet and it's

called only once during the entire life cycle of a JSP/Servlet.

Web TECHNOLOGIES

12 JSP

ii) Request Processing Phase:

The JSP container is also responsible for invoking the JSP page

implementation class to process each request and generate the

response. This is called the request processing phase.

_jspService() is the method which is called every time the JSP is

requested to serve a request. This method normally executes in a

separate thread of execution and the main JSP thread keeps waiting

for other incoming requests. Every time a request arrives, the main

JSP thread spawns a new thread and passes the request (incoming

request) and response (new) objects to the_jspService() method

which gets executed in the newly spawned thread.

The two phases are illustrated in Figure 1.3.

Figure 1.3. JSP page translation and request processing phases

As long as the JSP page remains unchanged, any subsequent

processing goes straight to the request processing phase (i.e., it

simply executes the class file).

Web TECHNOLOGIES

13 JSP

When the JSP page is modified, it goes through the translation phase

again before entering the request processing phase. So in a way, a

JSP page is really just another way to write a servlet without having to

be a Java programming expert.

And, except for the translation phase, a JSP page is handled exactly

like a regular servlet: it's loaded once and called repeatedly, until the

server is shut down.

By virtue of being an automatically generated servlet, a JSP page

inherits all of the advantages of servlets: platform and vendor

independence, integration, efficiency, scalability, robustness, and

security.

Life Cycle Methods:

i). The jspInit()- The container calls the jspInit() to initialize te

servlet instance.It is called before any other method, and is called

only once for a servlet instance.

public void jspInit(){

 // Initialization code...

}

ii). The _jspservice()- The container calls the _jspservice() for

each request, passing it the request and the response objects.

void _jspService(HttpServletRequest request,

 HttpServletResponse response)

{

 // Service handling code...

}

iii). The jspDestroy()- The container calls this when it decides to

take the instance out of service. It is the last method called in the

servlet instance.

Web TECHNOLOGIES

14 JSP

public void jspDestroy()

{

 // cleanup code goes here.

}

Figure 1.4 Life Cycle Methods of JSP

Generating Dynamic Content:

 JSP is all about generating dynamic content: content that

differs based on user input, time of day, the state of an

external system, or any other runtime conditions.

 JSP provides you with lots of tools for generating this content.

 Dynamic content can be generated using all JSP Elements

standard actions,
custom actions,
JavaBeans, and
scripting elements
Directives

Web TECHNOLOGIES

15 JSP

JSP Page Showing the Current Date and Time (date.jsp)

<%@ page language="java" contentType="text/html" %>

<html>

 <body bgcolor="white">

 <jsp:useBean id="clock" class="java.util.Date" />

 The current time at the server is:

 Date: <jsp:getProperty name="clock" property="date" />

 Month: <jsp:getProperty name="clock" property="month" />

 Year: <jsp:getProperty name="clock" property="year" />

 Hours: <jsp:getProperty name="clock" property="hours" />

 Minutes: <jsp:getProperty name="clock" property="minutes" />

 </body>

</html>

The date.jsp page displays the current date and time.

Output of date.jsp example

Web TECHNOLOGIES

16 JSP

Using Scripting Elements ,Directive, Action, Scriptlet:

Using JSP Directives

 Directives are used to specify attributes of the page itself,

primarily those that affect how the page is converted into a

Java servlet.

 There are three JSP directives:

page, include, and taglib.

 JSP pages typically start with a page directive that specifies

the scripting language and the content type for the page:

<%@ page language="java" contentType="text/html" %>

 A JSP directive element starts with a directive-start identifier

(<%@) followed by the directive name (e.g., page) and

directive attributes, and ends with %>.

 A directive contains one or more attribute name/value pairs

(e.g.,language="java").

 Note that JSP element and attribute names are case-

sensitive, and in most cases the same is true for attribute

values.

Web TECHNOLOGIES

17 JSP

 For instance, the language attribute value must be java,

not Java.

 All attribute values must also be enclosed in single or double

quotes.

 The page directive has many possible attributes

Example:

Main.html

a.jsp

Web TECHNOLOGIES

18 JSP

Output:

JSP Scripting Elements
 Expressions

◦ Format: <%= expression %>

 Scriptlets

◦ Format: <% code %>

 Declarations

◦ Format: <%! code %>

JSP Expressions

 Format

Web TECHNOLOGIES

19 JSP

◦ <%= Java Expression %>

 Result

◦ expression placed in _jspService inside out.print

 Examples

◦ Current time: <%= new java.util.Date() %>

◦ <%= request.getRemoteHost() %>

 XML-compatible syntax

◦ <jsp:expression>Java Expression</jsp:expression>

Example:

Output:

Web TECHNOLOGIES

20 JSP

Predefined Variables
 request

◦ The HttpServletRequest (1st argument to

service/doGet)

 response

◦ The HttpServletResponse (2nd arg to service/doGet)

 out

◦ The Writer (a buffered version of type JspWriter) used

to send output to the client

 session

◦ The HttpSession associated with the request (unless

disabled with the session attribute of the page

directive)

 application

◦ The ServletContext (for sharing data) as obtained via

getServletContext().

JSP Scriptlets

Web TECHNOLOGIES

21 JSP

 Format

◦<% Java Code %>

 Result

◦Code is inserted verbatim into servlet's _jspService

 Example

◦<%

String queryData = request.getQueryString();

out.println("Attached GET data: " + queryData);

%>

◦<% response.setContentType("text/plain"); %>

 XML-compatible syntax

<jsp:scriptlet>Java Code</jsp:scriptlet>

JSP Declarations
 Format

◦ <%! Java Code %>

 Result

◦ Code is inserted verbatim into servlet's class

definition, outside of any existing methods

 Examples

◦ <%! private int someField = 5; %>

◦ <%! private void someMethod(...) {...} %>

 XML-compatible syntax

◦ <jsp:declaration>Java Code</jsp:declaration>

Example:

Web TECHNOLOGIES

22 JSP

Output:

Declaring Variables and Methods

The JSP declaration tag is used to declare fields and methods.

The code written inside the jsp declaration tag is placed outside the

service() method of auto generated servlet.

So it doesn't get memory at each request.

Syntax of JSP declaration tag

Web TECHNOLOGIES

23 JSP

The syntax of the declaration tag is as follows:

1. <%! field or method declaration %>

Difference between JSP Scriptlet tag and Declaration tag

Jsp Scriptlet Tag Jsp Declaration Tag

The jsp scriptlet tag can

only declare variables not

methods.

The jsp declaration tag can

declare variables as well as

methods.

The declaration of scriptlet

tag is placed inside the

_jspService() method.

The declaration of jsp

declaration tag is placed

outside the _jspService()

method.

Example of JSP declaration tag that declares field

In this example of JSP declaration tag, we are declaring the field and

printing the value of the declared field using the jsp expression tag.

index.jsp

1. <html>

Web TECHNOLOGIES

24 JSP

2. <body>

3. <%! int data=50; %>

4. <%= "Value of the variable is:"+data %>

5. </body>

6. </html>

Example of JSP declaration tag that declares method

In this example of JSP declaration tag, we are defining the method

which returns the cube of given number and calling this method from

the jsp expression tag. But we can also use jsp scriptlet tag to call the

declared method.

index.jsp

1. <html>

2. <body>

3. <%!

4. int cube(int n){

5. return n*n*n*;

6. }

7. %>

8. <%= "Cube of 3 is:"+cube(3) %>

Web TECHNOLOGIES

25 JSP

9. </body>

10. </html>

IMPLICIT JSP OBJECTS:
JSP Implicit Objects are the Java objects that the JSP Container

makes available to developers in each page and developer can call

them directly without being explicitly declared.

JSP Implicit Objects are also called pre-defined variables.

JSP supports nine Implicit Objects which are listed below:

Object Description

Request This is the HttpServletRequest object associated
with the request.

Response This is the HttpServletResponse object associated
with the response to the client.

Out This is the PrintWriter object used to send output to
the client.

Session This is the HttpSession object associated with the
request.

Application This is the ServletContext object associated with
application context.

Config This is the ServletConfig object associated with the
page.

pageContext This encapsulates use of server-specific features like
higher performance JspWriters.

Page This is simply a synonym for this, and is used to call

Web TECHNOLOGIES

26 JSP

the methods defined by the translated servlet class.

Exception The Exception object allows the exception data to be
accessed by designated JSP.

The request Object:
The request object is an instance of a

javax.servlet.http.HttpServletRequest object. Each time a client

requests a page the JSP engine creates a new object to represent

that request.

The request object provides methods to get HTTP header

information including form data, cookies, HTTP methods etc.

The response Object:

The response object is an instance of a

javax.servlet.http.HttpServletResponse object. Just as the server

creates the request object, it also creates an object to represent the

response to the client.

The response object also defines the interfaces that deal with

creating new HTTP headers. Through this object the JSP

programmer can add new cookies or date stamps, HTTP status

codes etc.

The out Object:

The out implicit object is an instance of a javax.servlet.jsp.JspWriter

object and is used to send content in a response.

The initial JspWriter object is instantiated differently depending on

whether the page is buffered or not. Buffering can be easily turned off

by using the buffered='false' attribute of the page directive.

Web TECHNOLOGIES

27 JSP

The JspWriter object contains most of the same methods as the

java.io.PrintWriter class. However, JspWriter has some additional

methods designed to deal with buffering. Unlike the PrintWriter

object, JspWriter throws IOExceptions.

Following are the important methods which we would use to write

boolean char, int, double, object, String etc.

Method Description

out.print(dataType dt) Print a data type value

out.println(dataType dt) Print a data type value then terminate the
line with new line character.

out.flush() Flush the stream.

The session Object:
The session object is an instance of javax.servlet.http.HttpSession

and behaves exactly the same way that session objects behave

under Java Servlets.

The session object is used to track client session between client

requests.

The application Object:

The application object is direct wrapper around the ServletContext

object for the generated Servlet and in reality an instance of a

javax.servlet.ServletContext object.

This object is a representation of the JSP page through its entire

lifecycle. This object is created when the JSP page is initialized and

will be removed when the JSP page is removed by the jspDestroy()

method.

Web TECHNOLOGIES

28 JSP

By adding an attribute to application, you can ensure that all JSP files

that make up your web application have access to it.

The config Object:

The config object is an instantiation of javax.servlet.ServletConfig

and is a direct wrapper around the ServletConfig object for the

generated servlet.

This object allows the JSP programmer access to the Servlet or JSP

engine initialization parameters such as the paths or file locations

etc.

The following config method is the only one you might ever use, and

its usage is trivial:

config.getServletName();

This returns the servlet name, which is the string contained in the

<servlet-name> element defined in the WEB-INF\web.xml file

The pageContext Object:

The pageContext object is an instance of a

javax.servlet.jsp.PageContext object. The pageContext object is

used to represent the entire JSP page.

This object is intended as a means to access information about the

page while avoiding most of the implementation details.

This object stores references to the request and response objects for

each request. The application, config, session, and out objects are

derived by accessing attributes of this object.

Web TECHNOLOGIES

29 JSP

The pageContext object also contains information about the

directives issued to the JSP page, including the buffering information,

the errorPageURL, and page scope.

The PageContext class defines several fields, including

PAGE_SCOPE, REQUEST_SCOPE, SESSION_SCOPE, and

APPLICATION_SCOPE, which identify the four scopes. It also

supports more than 40 methods, about half of which are inherited

from the javax.servlet.jsp. JspContext class.

One of the important methods is removeAttribute, which accepts

either one or two arguments. For example,

pageContext.removeAttribute ("attrName") removes the attribute

from all scopes, while the following code only removes it from the

page scope:

pageContext.removeAttribute("attrName", PAGE_SCOPE);

The page Object:

This object is an actual reference to the instance of the page. It can

be thought of as an object that represents the entire JSP page.

The page object is really a direct synonym for the this object.

The exception Object:

The exception object is a wrapper containing the exception thrown

from the previous page. It is typically used to generate an appropriate

response to the error condition.

Web TECHNOLOGIES

30 JSP

Database Connectivity
JDBC stands for Java Database Connectivity, which is a standard

Java API for database-independent connectivity between the Java

programming language and a wide range of databases.

The JDBC library includes APIs for each of the tasks mentioned

below that are commonly associated with database usage.

Steps to connect database in java using JDBC are given below:
1. Load the JDBC driver.

2. Connection.

3. Statement.

4. Execute statement.

5. Close database connection.

1. Load the JDBC driver:
First step is to load or register the JDBC driver for the database. Class

class provides forName() method to dynamically load the driver class.

Syntax:

Web TECHNOLOGIES

31 JSP

Class.forName("driverClassName");

To load or register OracleDriver class:
Syntax:
Class.forName("oracle.jdbc.driver.OracleDriver");

To load or register MySQL class:
Syntax:
Class.forName("com.mysql.jdbc.Driver");

2. Create connection:
Second step is to open a database connection. DriverManager class

provides the facility to create a connection between a database and

the appropriate driver.To open a database connection we can call

getConnection() method of DriverManager class.

Syntax:
Connection connection = DriverManager.getConnection(url, user,

password);

To create a connection with Oracle database:

Syntax:
Connection connection =

DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe","

user","password");

To create a connection with MySQL database:

Syntax:
Connection connection =

DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb","ro

ot"," ");

Web TECHNOLOGIES

32 JSP

3. Create statement:
The statement object is used to execute the query against the

database. Connection interface acts as a factory for statement object.

A statement object can be any one of the Statement,

CallableStatement, and PreparedStatement types .To create a

statement object we have to call createStatement() method of

Connection interface. Connection interface also provides the

transaction management methods like commit() and rollback() etc.

Syntax:
Statement stmt=conn.createStatement();

4. Execute statement:
Statement interface provides the methods to execute a statement.

To execute a statement for select query use below:

Syntax:
ResultSet resultSet = stmt.executeQuery(selectQuery);

5. Close database connection:
After done with the database connection we have to close it. Use

close() method of Connection interface to close database connection.

The statement and ResultSet objects will be closed automatically

when we close the connection object.

Syntax:
connection.close();

Example
<%@page import="java.sql.*" %>

<%

try

{

Class.forName("oracle.jdbc.driver.OracleDriver");

Web TECHNOLOGIES

33 JSP

out.println("<h1>");

out.println("Loaded the Driver");

Connection

c=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe

","system","manager");

out.println("Connect set");

}

catch(Exception e)

{

out.println(e.toString());

}

%>

Studying Javax.sql.* package
Provides the API for server side data source access and processing

from the JavaTM programming language. This package supplements

the java.sql package.

The javax.sql package provides for the following:

1. The DataSource interface as an alternative to

the DriverManager for establishing a connection with a data

source

2. Connection pooling and Statement pooling

3. Distributed transactions

4. Rowsets

Applications use the DataSource and RowSet APIs directly, but the

connection pooling and distributed transaction APIs are used

internally by the middle-tier infrastructure.

CRUD OPERATIONS.

Basic database operations (CRUD - Create, Retrieve, Update and

Delete) using JDBC (Java Database Connectivity) API. These CRUD

Web TECHNOLOGIES

34 JSP

operations are equivalent to the INSERT, SELECT, UPDATE and

DELETE statements in SQL language.

Create a table
<%@page import="java.sql.*" %>

<%

try

{

Class.forName("oracle.jdbc.driver.OracleDriver");

out.println("<h1>");

out.println("Loaded the Driver");

Connection

c=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe

","system","manager");

out.println("Connect set");

Statement stmt=c.createStatement();

String sql="CREATE TABLE studentbalu " + "(sno INTEGER not

Null,"+

 " sname VARCHAR2(20)," +

 " age VARCHAR2(20))";

stmt.executeUpdate(sql);

System.out.println("Create table in given database...");

}

catch(Exception e)

{

out.println(e.toString());

}

%>

Insert operation
<%@page import="java.sql.*" %>

Web TECHNOLOGIES

35 JSP

<%

try

{

Class.forName("oracle.jdbc.driver.OracleDriver");

out.println("<h1>");

out.println("Loaded the Driver");

Connection

c=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe

","system","manager");

out.println("Connect set");

Statement stmt=c.createStatement();

String sql= sql = "INSERT INTO studentbalu VALUES (101, 'balu',

25)";

stmt.executeUpdate(sql);

 System.out.println("Inserted records into the table...");

}

catch(Exception e)

{

out.println(e.toString());

}

%>

Update operation
<%@page import="java.sql.*" %>

<%

try

{

Class.forName("oracle.jdbc.driver.OracleDriver");

out.println("<h1>");

Web TECHNOLOGIES

36 JSP

out.println("Loaded the Driver");

Connection

c=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe

","system","manager");

out.println("Connect set");

Statement stmt=c.createStatement();

String sql= "UPDATE studentbalu " +

 "SET age = 42 WHERE sno=101";

stmt.executeUpdate(sql);

 System.out.println("Updated records into the table...");

}

catch(Exception e)

{

out.println(e.toString());

}

%>

Delete operation
<%@page import="java.sql.*" %>

<%

try

{

Class.forName("oracle.jdbc.driver.OracleDriver");

out.println("<h1>");

out.println("Loaded the Driver");

Connection

c=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe

","system","manager");

Web TECHNOLOGIES

37 JSP

out.println("Connect set");

Statement stmt=c.createStatement();

String sql = "DELETE FROM studentbalu " +

 "WHERE sno = 101";

stmt.executeUpdate(sql);

 System.out.println("deleted records into the table...");

}

catch(Exception e)

{

out.println(e.toString());

}

%>

 Accessing a database from a JSP Page
Sample programs to access database from JSP:

Write a JSP to display employee number and name from emp
table

Web TECHNOLOGIES

38 JSP

Output:

Web TECHNOLOGIES

39 JSP

 Write a JSP to Insert one record into dept table and

Display them.

Web TECHNOLOGIES

40 JSP

WRITE A JSP TO STORE USER_ID AND PASSWORD and Display
User.html

Newuser.jsp

Web TECHNOLOGIES

41 JSP

Web TECHNOLOGIES

42 JSP

Accessing Database using Type 4 Driver

