
WEB TECHNOLOGIES

1 JDBC

JDBC

INTRODUCTION TO JDBC
JDBC stands for Java Database Connectivity, which is a standard

Java API for database-independent connectivity between the Java

programming language and a wide range of databases.

The JDBC library includes APIs for each of the tasks mentioned

below that are commonly associated with database usage.

 Making a connection to a database.

 Creating SQL or MySQL statements.

 Executing SQL or MySQL queries in the database.

 Viewing & Modifying the resulting records.

Fundamentally, JDBC is a specification that provides a complete set

of interfaces that allows for portable access to an underlying

database. Java can be used to write different types of executables,

such as −

 Java Applications

 Java Applets

 Java Servlets

 Java ServerPages (JSPs)

 Enterprise JavaBeans (EJBs).

All of these different executables are able to use a JDBC driver to

access a database, and take advantage of the stored data.

JDBC provides the same capabilities as ODBC, allowing Java

programs to contain database-independent code.

JDBC ARCHITECTURE
The JDBC API supports both two-tier and three-tier processing

models for database access but in general, JDBC Architecture

consists of two layers −

 JDBC API: This provides the application-to-JDBC Manager

connection.

WEB TECHNOLOGIES

2 JDBC

 JDBC Driver API: This supports the JDBC Manager-to-

Driver Connection.

The JDBC API uses a driver manager and database-specific drivers

to provide transparent connectivity to heterogeneous databases.

The JDBC driver manager ensures that the correct driver is used to

access each data source. The driver manager is capable of

supporting multiple concurrent drivers connected to multiple

heterogeneous databases.

Following is the architectural diagram, which shows the location of

the driver manager with respect to the JDBC drivers and the Java

application −

Common JDBC Components
The JDBC API provides the following interfaces and classes −

 DriverManager: This class manages a list of database

drivers. Matches connection requests from the java

application with the proper database driver using

WEB TECHNOLOGIES

3 JDBC

communication sub protocol. The first driver that recognizes

a certain subprotocol under JDBC will be used to establish a

database Connection.

 Driver: This interface handles the communications with the

database server. You will interact directly with Driver objects

very rarely. Instead, you use DriverManager objects, which

manages objects of this type. It also abstracts the details

associated with working with Driver objects.

 Connection: This interface with all methods for contacting a

database. The connection object represents communication

context, i.e., all communication with database is through

connection object only.

 Statement: You use objects created from this interface to

submit the SQL statements to the database. Some derived

interfaces accept parameters in addition to executing stored

procedures.

 ResultSet: These objects hold data retrieved from a

database after you execute an SQL query using Statement

objects. It acts as an iterator to allow you to move through its

data.

 SQLException: This class handles any errors that occur in a

database application.

JDBC Drivers
JDBC drivers are divided into four types or levels. The different
types of jdbc drivers are:

Type 1: JDBC-ODBC Bridge driver (Bridge)

Type 2: Native-API/partly Java driver (Native)

Type 3: AllJava/Net-protocol driver (Middleware)

Type 4: All Java/Native-protocol driver (Pure)

Type 1 JDBC Driver
JDBC-ODBC Bridge driver

WEB TECHNOLOGIES

4 JDBC

The Type 1 driver translates all JDBC calls into ODBC calls and sends

them to the ODBC driver. ODBC is a generic API. The JDBC-ODBC

Bridge driver is recommended only for experimental use or when no

other alternative is available.

Type 1: JDBC-ODBC Bridge
Advantage
The JDBC-ODBC Bridge allows access to almost any database, since

the database's ODBC drivers are already available.

Disadvantages
1. Since the Bridge driver is not written fully in Java, Type 1 drivers

are not portable.

2. A performance issue is seen as a JDBC call goes through the

bridge to the ODBC driver, then to the database, and this applies

even in the reverse process. They are the slowest of all driver

types.

3. The client system requires the ODBC Installation to use the driver.

4. Not good for the Web.

WEB TECHNOLOGIES

5 JDBC

Type 2 JDBC Driver
Native-API/partly Java driver
The distinctive characteristic of type 2 jdbc drivers are that Type 2

drivers convert JDBC calls into database-specific calls i.e. this driver is

specific to a particular database. Some distinctive characteristic of

type 2 jdbc drivers are shown below. Example: Oracle will have oracle

native api.

Type 2: Native api/ Partly Java Driver
Advantage
The distinctive characteristic of type 2 jdbc drivers are that they are

typically offer better performance than the JDBC-ODBC Bridge as the

layers of communication (tiers) are less than that of Type

1 and also it uses Native api which is Database specific.

Disadvantage

WEB TECHNOLOGIES

6 JDBC

1. Native API must be installed in the Client System and hence type 2

drivers cannot be used for the Internet.

2. Like Type 1 drivers, it’s not written in Java Language which forms a

portability issue.

3. If we change the Database we have to change the native api as it is

specific to a database

4. Mostly obsolete now

5. Usually not thread safe.

Type 3 JDBC Driver
All Java/Net-protocol driver
Type 3 database requests are passed through the network to the

middle-tier server. The middle-tier then translates the request to the

database. If the middle-tier server can in turn use Type1, Type 2 or

Type 4 drivers.

Type 3: All Java/ Net-Protocol Driver
Advantage

WEB TECHNOLOGIES

7 JDBC

1. This driver is server-based, so there is no need for any vendor

database library to be present on client machines.

2. This driver is fully written in Java and hence Portable. It is suitable

for the web.

3. There are many opportunities to optimize portability, performance,

and scalability.

4. The net protocol can be designed to make the client JDBC driver

very small and fast to load.

5. The type 3 driver typically provides support for features such as

caching (connections, query results, and so on), load balancing,

and advanced

system administration such as logging and auditing.

6. This driver is very flexible allows access to multiple databases using

one driver.

7. They are the most efficient amongst all driver types.

Disadvantage
It requires another server application to install and maintain.

Traversing the recordset may take longer, since the data comes

through the backend server.

Type 4 JDBC Driver
Native-protocol/all-Java driver

The Type 4 uses java networking libraries to communicate directly

with the database server.

WEB TECHNOLOGIES

8 JDBC

Type 4: Native-protocol/all-Java driver
Advantage
1. The major benefit of using a type 4 jdbc drivers are that they are

completely written in Java to achieve platform independence and

eliminate deployment administration issues. It is most suitable for the

web.

2. Number of translation layers is very less i.e. type 4 JDBC drivers

don't have to translate database requests to ODBC or a native

connectivity interface or to pass the request on to another server,

performance is typically quite good.

3. You don’t need to install special software on the client or server.

Further, these drivers can be downloaded dynamically.

Disadvantage

With type 4 drivers, the user needs a different driver for each

database.

Database Connectivity

WEB TECHNOLOGIES

9 JDBC

JDBC stands for Java Database Connectivity, which is a standard

Java API for database-independent connectivity between the Java

programming language and a wide range of databases.

The JDBC library includes APIs for each of the tasks mentioned

below that are commonly associated with database usage.

Steps to connect database in java using JDBC are given below:
1. Load the JDBC driver.

2. Connection.

3. Statement.

4. Execute statement.

5. Close database connection.

1. Load the JDBC driver:
First step is to load or register the JDBC driver for the database. Class

class provides forName() method to dynamically load the driver class.

Syntax:

Class.forName("driverClassName");

To load or register OracleDriver class:
Syntax:
Class.forName("oracle.jdbc.driver.OracleDriver");

To load or register MySQL class:
Syntax:
Class.forName("com.mysql.jdbc.Driver");

2. Create connection:
Second step is to open a database connection. DriverManager class

provides the facility to create a connection between a database and

the appropriate driver.To open a database connection we can call

getConnection() method of DriverManager class.

WEB TECHNOLOGIES

10 JDBC

Syntax:
Connection connection = DriverManager.getConnection(url, user,

password);

To create a connection with Oracle database:

Syntax:
Connection connection =

DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe","

user","password");

To create a connection with MySQL database:

Syntax:
Connection connection =

DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb","ro

ot"," ");

3. Create statement:
The statement object is used to execute the query against the

database. Connection interface acts as a factory for statement object.

A statement object can be any one of the Statement,

CallableStatement, and PreparedStatement types .To create a

statement object we have to call createStatement() method of

Connection interface. Connection interface also provides the

transaction management methods like commit() and rollback() etc.

Syntax:
Statement stmt=conn.createStatement();

4. Execute statement:
Statement interface provides the methods to execute a statement.

To execute a statement for select query use below:

Syntax:

WEB TECHNOLOGIES

11 JDBC

ResultSet resultSet = stmt.executeQuery(selectQuery);

5. Close database connection:
After done with the database connection we have to close it. Use

close() method of Connection interface to close database connection.

The statement and ResultSet objects will be closed automatically

when we close the connection object.

Syntax:
connection.close();

Example
<%@page import="java.sql.*" %>

<%

try

{

Class.forName("oracle.jdbc.driver.OracleDriver");

out.println("<h1>");

out.println("Loaded the Driver");

Connection

c=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe

","system","manager");

out.println("Connect set");

}

catch(Exception e)

{

out.println(e.toString());

}

%>

Studying Javax.sql.* package

WEB TECHNOLOGIES

12 JDBC

Provides the API for server side data source access and processing

from the JavaTM programming language. This package supplements

the java.sql package.

The javax.sql package provides for the following:

1. The DataSource interface as an alternative to

the DriverManager for establishing a connection with a data

source

2. Connection pooling and Statement pooling

3. Distributed transactions

4. Rowsets

Applications use the DataSource and RowSet APIs directly, but the

connection pooling and distributed transaction APIs are used

internally by the middle-tier infrastructure.

CRUD OPERATIONS.

Basic database operations (CRUD - Create, Retrieve, Update and

Delete) using JDBC (Java Database Connectivity) API. These CRUD

operations are equivalent to the INSERT, SELECT, UPDATE and

DELETE statements in SQL language.

Create a table
<%@page import="java.sql.*" %>

<%

try

{

Class.forName("oracle.jdbc.driver.OracleDriver");

out.println("<h1>");

out.println("Loaded the Driver");

Connection

c=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe

","system","manager");

WEB TECHNOLOGIES

13 JDBC

out.println("Connect set");

Statement stmt=c.createStatement();

String sql="CREATE TABLE studentbalu " + "(sno INTEGER not

Null,"+

 " sname VARCHAR2(20)," +

 " age VARCHAR2(20))";

stmt.executeUpdate(sql);

System.out.println("Create table in given database...");

}

catch(Exception e)

{

out.println(e.toString());

}

%>

Insert operation
<%@page import="java.sql.*" %>

<%

try

{

Class.forName("oracle.jdbc.driver.OracleDriver");

out.println("<h1>");

out.println("Loaded the Driver");

Connection

c=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe

","system","manager");

out.println("Connect set");

Statement stmt=c.createStatement();

String sql= sql = "INSERT INTO studentbalu VALUES (101, 'balu',

25)";

stmt.executeUpdate(sql);

WEB TECHNOLOGIES

14 JDBC

 System.out.println("Inserted records into the table...");

}

catch(Exception e)

{

out.println(e.toString());

}

%>

Update operation
<%@page import="java.sql.*" %>

<%

try

{

Class.forName("oracle.jdbc.driver.OracleDriver");

out.println("<h1>");

out.println("Loaded the Driver");

Connection

c=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe

","system","manager");

out.println("Connect set");

Statement stmt=c.createStatement();

String sql= "UPDATE studentbalu " +

 "SET age = 42 WHERE sno=101";

stmt.executeUpdate(sql);

 System.out.println("Updated records into the table...");

}

catch(Exception e)

WEB TECHNOLOGIES

15 JDBC

{

out.println(e.toString());

}

%>

Delete operation
<%@page import="java.sql.*" %>

<%

try

{

Class.forName("oracle.jdbc.driver.OracleDriver");

out.println("<h1>");

out.println("Loaded the Driver");

Connection

c=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe

","system","manager");

out.println("Connect set");

Statement stmt=c.createStatement();

String sql = "DELETE FROM studentbalu " +

 "WHERE sno = 101";

stmt.executeUpdate(sql);

 System.out.println("deleted records into the table...");

}

catch(Exception e)

{

out.println(e.toString());

}

WEB TECHNOLOGIES

16 JDBC

%>

 Accessing a database from a JSP Page
Sample programs to access database from JSP:

Write a JSP to display employee number and name from emp
table

WEB TECHNOLOGIES

17 JDBC

Output:

 Write a JSP to Insert one record into dept table and

Display them.

WEB TECHNOLOGIES

18 JDBC

WRITE A JSP TO STORE USER_ID AND PASSWORD and Display
User.html

Newuser.jsp

WEB TECHNOLOGIES

19 JDBC

WEB TECHNOLOGIES

20 JDBC

Accessing Database using Type 4 Driver

