
WEB TECHNOLOGIES

1 JAVA SCRIPT, XML

Chapter 2 – JAVA SCRIPT, XML

Java Script: Introduction to Javascript, variables, primitive data types, control flow
statements, Built-in objects, arrays, functions, event handling, DHTML - Object model.
Bootstrap: Introduction to Bootstrap, Structure of the page, Typography, Forms.

INTRODUCTION TO JAVA SCRIPT:

 Web pages are two types

i. Static web page: there is no specific interaction with

the client

ii. Dynamic web page: web page which is having

interactions with client and as well as validations can

be added.

 Script means small piece of Code.

 Scripting Language is a high-level programming language,

whose programs are interpreted by another program at run

time rather than compiled by the computer processor.

 BY using JavaScript we can create interactive web pages. It is

designed to add interactivity to HTML pages.

 Previously JavaScript was known as LiveScript, but later it

was changed to JavaScript. As Java was very popular at that

time and introducing a new language with the similarity in

names would be beneficial they thought.

 Scripting languages are of 2 types.

 client-side scripting languages

 servers-side scripting languages

 In general Client-side scripting is used for performing simple

validations at client-side;

 Server-side scripting is used for database verifications.

 Examples:

Client-side scripting languages: VBScript, JavaScript and

Jscript.

WEB TECHNOLOGIES

2 JAVA SCRIPT, XML

Server-side scripting languages: ASP, JSP, Servlets and PHP

etc.

 Simple HTML code is called static web page, if you add script

to HTML page it is called dynamic page.

 Netscape Navigator developed JavaScript and Microsoft’s

version of JavaScript is Jscript.

Features of JavaScript:

 JavaScript is a lightweight, interpreted programming language

means that scripts execute without preliminary compilation.

 It is an Object-based Scripting Language.

 Java script is case sensitive language

 Complementary to and integrated with Java.

 Open and cross-platform.

Advantages of JavaScript:
1. Less server interaction:

You can validate the user input before sending the page off to

the server. This saves server traffic, which means less load on server.

2. Immediate feedback to the visitors or end-users:
If you submit a form if there is any error in form filling

immediately visitor get the feedback, because validation performed at

client side.

3. Can put dynamic text into an HTML page

4. Used to Validate form input data

5. Java script code can react to user events

6. Can be used to detect the visitor’s browser

Limitations of JavaScript:

 Client-side JavaScript does not allow the reading or writing of

files. This has been kept for security reason.

 JavaScript cannot be used for networking applications

because there is no such support available.

WEB TECHNOLOGIES

3 JAVA SCRIPT, XML

 JavaScript doesn't have any multithreading or multiprocessor

capabilities.

JAVA Vs JAVASCRIPT:

JAVA JAVASCRIPT

1. Object Oriented

Programming Language

2.1 Object based Scripting

Language

2. Platform Independent 2.2 Browser Dependant

3. It is both compiled and

interpreted

2.3
It is interpreted at runtime

4. It is used to create server

side applications and

standalone programming

2.4
It is used to make the web

pages more interactive

5. Java is a strongly typed

language

2.5 JavaScript is not strongly

typed(Loosely Typed)

6. Developed by sun

Microsystems

2.6
Developed by Netscape

7.
Java Programs can be

standalone

2.7 JavaScript must be placed

inside an HTML document

to function

Embedding JavaScript in an HTML Page:
Embed a JavaScript in an HTML document by using <script> and

</script> html tags.

Syntax:

<script ...>

JavaScript code

</script>

WEB TECHNOLOGIES

4 JAVA SCRIPT, XML

<script > tag has the following attributes.

Type Refers to the MIME (Multipurpose Internet Mail

Extensions) type of the script.

Language
This attribute specifies what scripting language you

are using. Typically, its value will be javascript.

Although recent versions of HTML (and XHTML, its

successor) have phased out the use of this attribute.

Example:
<html>

<body>

<script language="javascript" type="text/javascript">

document.write ("Hello World!")

</script>

</body>

</html>

Alert Message Example:
<html>

<head>

<title>My First JavaScript code!!!</title>

WEB TECHNOLOGIES

5 JAVA SCRIPT, XML

<script type="text/javascript">

alert("Hello World!");

</script>

</head>

<body>

</body>

</html>

Output:

 Alert(“Hello World”);

Var d= Confirm(“Do you want to continue?”);

 Var i=prompt(“Enter your name:”,”SRGEC”);

Comments in JavaScript:
JavaScript supports both C-style and C++-style comments. Thus:

 Any text between a // and the end of a line is treated as a

comment and is ignored by JavaScript.

 Any text between the characters /* and */ is treated as a

comment. This may span multiple lines.

 VARIABLES:

• Like any programming language JavaScript has variables.

• Stores data items used in the script.

• Strict rules governing how you name your variables (Much like

other languages):

WEB TECHNOLOGIES

6 JAVA SCRIPT, XML

Naming Conventions for Variables:
• Variable names must begin with a alphabet([a-z]/[A-Z]) or

underscore;

• You can’t use spaces in names

• Names are case sensitive so the variables fred, FRED and

frEd all refer to different variables,

• It is not a good idea to name variables with similar names

• You can’t use a reserved word as a variable name, e.g. var.

Creating Variables
• Before you use a variable in a JavaScript program, you must

declare it. Variables are declared with the var keyword as

follows.

<script type="text/javascript">

var name;

var rollno;

</script>

• Storing a value in a variable is called variable initialization.

You can do variable initialization at the time of variable

creation or at a later point in time when you need that

variable.

<script type="text/javascript">

var name = “Aziz”;

var rollno=501;

</script>

Scope of Variables in JavaScript:
The scope of a variable is the region of your program in which it is

defined and is accessible. JavaScript variables have only two scopes.

WEB TECHNOLOGIES

7 JAVA SCRIPT, XML

 Global Variables: A global variable has global scope which

means it can be defined and used anywhere in your

JavaScript code.

 Local Variables: A local variable will be visible only within a

function where it is defined. Function parameters are always

local to that function.

Automatically Global:
• If you assign a value to a variable that has not been declared,

it will automatically become a GLOBAL variable.

• This code example will declare a global variable price, even if

the value is assigned inside a function.

Example:

myFunction();

// code here can use price

function myFunction()

{

 price = 250; //has Global scope

}

Example:
<script language="javascript" type="text/javascript">

var collegename="GEC college"; //global scope

function function1()

{

var studentname="Anand";//local scope

document.write("<center>"+studentname+"</center>
");

document.write("<center>"+collegename+"</center>
");//global

scope

WEB TECHNOLOGIES

8 JAVA SCRIPT, XML

}

function function2()

{

var branchname="Information Technology";//local scope

document.write("<center>"+branchname+"</center>
");

document.write("<center>"+collegename+"</center>
");//global

scope

document.write("<center>"+studentname+"</center>");//not

displayed because of local scope

}

function1();

function2();

</script>

DATA TYPES:

 JavaScript has only four types of data

 Numeric

 String

 Boolean

 Null

 Numeric :

 Integers such as 108 or 1120 or 2016

 Floating point values like 23.42, -56.01 and 2E45.

 No need to differentiate between.

 In fact variables can change type within program.

 String:

 A String is a Collection of character.

 All of the following are strings:

"Computer", "Digital" , "12345.432".

 Put quotes around the value to a assign a variable:

name = "Uttam K.Roy";

WEB TECHNOLOGIES

9 JAVA SCRIPT, XML

 Boolean:

 Variables can hold the values true and false.

 Used a lot in conditional tests (later).

 Null:

 Used when you don’t yet know something.

 A null value means one that has not yet been decided.

 It does not mean nil or zero and should NOT be used in

that way.

FUNCTIONS:
• A function is a group of reusable code which can be called

anywhere in your program.

• This eliminates the need of writing the same code again and

again.

• It helps programmers in writing modular codes. Functions

allow a programmer to divide a big program into a number of

small and manageable functions.

• Like any other advanced programming language, JavaScript

also supports all the features necessary to write modular code

using functions.

• We were using these functions again and again, but they had

been written in core JavaScript only once.

• JavaScript allows us to write our own functions as well.

 Function Definition

 Before we use a function, we need to define it.

 The most common way to define a function in JavaScript

is

 By using keyword function, followed by a unique function

name, a list of parameters (that might be empty), and a

statement block surrounded by curly braces.

WEB TECHNOLOGIES

10 JAVA SCRIPT, XML

Syntax:

<script type="text/javascript">

function functionname(parameter-list)

 {

 statements

 }

</script>

Example:

<html>

<head>

<title>My First JavaScript code!!!</title>

<script type="text/javascript">

function sayHello()

{

document.write("Hello Anand How are

you...?");

}

sayHello();//calling function

</script>

</head>;

<body>

</body>

</html>

Calling a Function:
To invoke a function somewhere later in the script, you would

simply need to write the name of that function as shown in the

following code.

<html>

<head>

<title>Calling a function</title>

<style type='text/css'>

{

WEB TECHNOLOGIES

11 JAVA SCRIPT, XML

Output:

OPERATORS:
JavaScript supports the following types of operators.

 Arithmetic Operators

 Assignment Operators

 Comparison Operators

 Logical (or Relational) Operators

 Conditional (or ternary) Operators

Arithmetic Operators:

 JavaScript supports the following arithmetic operators:

 Assume variable A holds 10 and variable B holds 20, then:

Operator Descrition Example

+
Adds two numbers or joins two

strings

20+10 returns

30

-
Subtracts two numbers or

represents a negative number

20-10 returns

10

WEB TECHNOLOGIES

12 JAVA SCRIPT, XML

* Multiplies two numbers
20*10 returns

200

/
Divides two numbers evenly

and returns the quotient
20/10 returns 2

%
Divides two numbers and

returns the remainder

20%10 returns

0

++

Increments the value of a

number by 1

Prefix (Pre-increment)

Suffix (Post-increment)

m = 20

n=++m

assigns 21 to n

m = 20

n=m++

assigns 20 to n

- -

Decrements the value of a

number by 1

 Prefix (Pre-

Decrement)

 Suffix (Post-

Decrement)

m = 20

n=--m assigns

19 to n

m = 20

n=m++

assigns 20 to n

Assignment Operators:

Operator Description Example

=
Assigns the value on the right

hand side to the variable on left

hand side

m=20

+=

Adds the right hand side

operand to the left hand side

operand and assigns the result

to the left hand side operand.

m = 20

n = 10

m+=n

assigns 30 to m

Subtracts the right hand side m = 20

WEB TECHNOLOGIES

13 JAVA SCRIPT, XML

-= operand from the left hand

side operand and assigns the

result to the left hand side

operand.

n = 5

m-=n

assigns 15 to m

*=

Multiplies the right hand side

operand and the left hand side

operand and assigns the result

to the left hand side operand.

m = 20

n = 10

m*=n

assigns 200 to m

/=
Devides the left hand side

operand by the right hand side

operand and assigns the

quotient to the left hand side

operand.

m = 20

n = 10

m/=n

assigns 2 to m

%=

Divides the left hand side

operand by the right hand side

operand and assigns the

remainder to the left hand side

operand.

m = 20

n = 10

m%=n

assigns 0 to m

Comparison Operators:

Operator Description Example

==
Returns true if both the

operands are equal otherwise

returns false

20==10 returns

false

!=
Returns true if both the

operands are not equal

otherwise returns false

20 !=10 returns true

> Returns true if left hand side

operand

Is greater than the right hand

side operand. otherwise

20 > 10 returns true

WEB TECHNOLOGIES

14 JAVA SCRIPT, XML

returns false

>=

Returns true if left hand side

operand

is greater than or equal to the

right hand side operand.

otherwise returns false

20 >= 10 returns

true

<

Returns true if left hand side

operand

Is less than the right hand side

operand. otherwise returns

false

20 < 10 returns

false

<=

Returns true if left hand side

operand

is less than or equal to the

right hand side operand.

otherwise returns false

20

<= 10 returns

false

Logical (or Relational) Operators:

Operator Descrition Example

&&
Returns true only if both the

operands are true, otherwise

returns false

True && True

returns True

||

Returns true only if either of

the operands are true. It

returns false when both the

operands are false

True || False returns

True

! Negates the operand !true returns false

Conditional (or ternary) Operators:

WEB TECHNOLOGIES

15 JAVA SCRIPT, XML

Operator Description Example

?: Returns the second operand

if the first operand is true,

otherwise returns the third

operand.

Result=(20 > 10)? 20

: 10

Here, 20 is assigned

to Result

CONTROL FLOW STATEMENTS: These statements allow you to

control the flow of your program’s execution based upon conditions

known only during run time.

In JavaScript we have the following conditional statements:

 Use if to specify a block of code to be executed, if a specified

condition is true

 Use else to specify a block of code to be executed, if the

same condition is false

 Use else if to specify a new condition to test, if the first

condition is false

 Use switch to specify many alternative blocks of code to be

executed

The if Statement
Syntax

if (condition)

 {

 block of code to be executed if the condition is true

}

The else Statement
Use the else statement to specify a block of code to be executed if the

condition is false.

WEB TECHNOLOGIES

16 JAVA SCRIPT, XML

if (condition)

{

 block of code to be executed if the condition is true

}

 else

 {

 block of code to be executed if the condition is false

 }

Example:
<HTML>

 <HEAD>

<script>

 function check()

 {

 var age=form.age.value;

 if(age>=18)

 {

 alert("You are eligible for vote");

 }

 else

 {

 alert("You are not eligible for vote");

 }

 }

</script>

 </HEAD>

 <BODY>

<form name='form'>

WEB TECHNOLOGIES

17 JAVA SCRIPT, XML

<p>Enter your age and check whether you are eligible

for vote or not?</p>

<input type='text' name='age'>

<input type='button' value='check eligibility'

onclick='check();'>

</form>

 </BODY>

</HTML>

Output:

The else if Statement
Use the else if statement to specify a new condition if the first

condition is false.

Syntax:

if (condition1)

{

 block of code to be executed if condition1 is true

}

else if (condition2)

{
 block of code to be executed if the condition1 is false and
condition2 is true
}
else

 {

 block of code to be executed if the condition1 is false and

Example:

<HTML>

WEB TECHNOLOGIES

18 JAVA SCRIPT, XML

 <HEAD>

<script>

 function check()

 {

 var percentage=form.percentage.value;

 if(percentage>=90&&percentage<=100)

 {

 alert("Your grade is A+");

 }

 else if(percentage>=75&&percentage<90)

 {

 alert("Your grade is A");

 }

 else if(percentage>=60&&percentage<75)

 {

 alert("Your grade is B");

 }

 else if(percentage>=40&&percentage<60)

 {

 alert("Your grade is C");

 }

 else if(percentage>100)

 {

 alert("Wrong details.....");

 }

 else

 {

 alert("You are failed");

 }

 }

</script>

WEB TECHNOLOGIES

19 JAVA SCRIPT, XML

 </HEAD>

 <BODY>

<form name='form'>

<p>Enter your marks to know your grade</p>

<input type='text' name='percentage'

placeholder='EX:70.45/70'>

<input type='button' value='check grade'

onclick='check();'>

</form>

 </BODY>

</HTML>

Output:

Switch Statement:
Use the switch statement to select one of many blocks of code to be

executed.

Syntax:

switch(expression) {

 case 1:

 code block

WEB TECHNOLOGIES

20 JAVA SCRIPT, XML

 break;

 case 2:

 code block

 break;

 .

 .

 case n:

 code block

 break;

 default:

 default code block

}

This is how it works:

 The switch expression is evaluated once.

 The value of the expression is compared with the values of

each case.

 If there is a match, the associated block of code is executed.

Example:
<HTML>

 <HEAD>

<script>

function check()

{

var category=form.category.value;

switch(category)

{

case "SC":

alert("50 vanacies");

break;

case "OC":

alert("5 vacanices");

WEB TECHNOLOGIES

21 JAVA SCRIPT, XML

break;

case "BC":

alert("30 vanacies");

break;

case "ST":

alert("45 vanacies");

break;

case "OBC":

alert("20 vanacies");

break;

default:

alert("please enter valid category");

break;

}

}

</script>

 </HEAD>

 <BODY>

<form name='form'>

<p>Please enter your category to check no of

vacanices</p>

<input type='text' name='category'

placeholder='EX:OC/BC/OBC/SC/ST'>

<input type='button' value='Check Vacancies'

onclick='check();'>

</form>

 </BODY>

</HTML>

Output:

WEB TECHNOLOGIES

22 JAVA SCRIPT, XML

The While Loop
Syntax:

while (condition)

 {

 code block to be executed

}

Example:
Write a JavaScript code to print 0 to n even numbers using while loop.

 <HTML>

 <HEAD>

<script>

 function check()

 {

 var number=form.number.value;

 var i=1;

 while(i<=number)

 {

 if(i%2==0)

 document.write("<center>"+i+"</center>
");

WEB TECHNOLOGIES

23 JAVA SCRIPT, XML

 i++;

 }

 }

</script>

 </HEAD>

 <BODY>

<form name='form'>

<p>Find o to n even numbers</p>

<input type='text' name='number'>

<input type='button' value='Get Even Numbers'

onclick='check();'>

</form>

 </BODY>

</HTML>

Output:

The Do/While Loop

WEB TECHNOLOGIES

24 JAVA SCRIPT, XML

The do/while loop is a variant of the while loop. This loop will

execute the code block once, before checking if the condition is true,

then it will repeat the loop as long as the condition is true.

Syntax

do

 {

 code block to be executed

}while (condition);
The for
Loop: The for loop has the following syntax:

for (initialization; condition; iteration)

 {

 code block to be executed

}

Statement 1 is executed before the loop (the code block) starts.

Statement 2 defines the condition for running the loop (the code

block).

Statement 3 is executed each time after the loop (the code block) has

been executed.

WEB TECHNOLOGIES

25 JAVA SCRIPT, XML

Write a JavaScript code to print 1 to 10 even numbers using

Example 2:

WEB TECHNOLOGIES

26 JAVA SCRIPT, XML

<HTML>

 <HEAD>

<script>

 function check()

 {

 var number=form.number.value;

 var fact=1;

 for(var i=1;i<=number;i++)

 {

 fact=fact*i;

 }

 alert("factorial of "+number+"is "+fact);

 }

</script>

 </HEAD>

 <BODY>

<form name='form'>

<p>Enter a number to know the factorial</p>

<input type='text' name='number'>

<input type='button' value='Get Factorial'

onclick='check();'>

</form>

 </BODY>

</HTML>

Output:

WEB TECHNOLOGIES

27 JAVA SCRIPT, XML

OBJECTS IN JAVA SCRIPT: (BUILT-IN OBJECTS)
 An Object is a thing.

 There are pre defined objects and user defined objects in

Javascript.

 Each object can have properties and methods:

 A property tells you something about an object.

 A method performs an action

 The following are some of the Pre defined objects/Built-in

Objects.

 Document

 Window

 Browser/Navigator

 Form

 String

 Math

 Array

 Date

HTML DOM
The way document content is accessed and modified is called

the Document Object Model, or DOM.

In the HTML DOM (Document Object Model), everything is a node:

 The document itself is a document node

WEB TECHNOLOGIES

28 JAVA SCRIPT, XML

 All HTML elements are element nodes

 All HTML attributes are attribute nodes

 Text inside HTML elements are text nodes

 Comments are comment nodes

The Objects are organized in a hierarchy. This hierarchical structure

applies to the organization of objects in a Web document.

 Window object − Top of the hierarchy. It is the outmost

element of the object hierarchy.

 Document object − Each HTML document that gets loaded

into a window becomes a document object. The document

contains the contents of the page.

 Form object − Everything enclosed in the <form>...</form>

tags sets the form object.

 Form control elements − The form object contains all the

elements defined for that object such as text fields, buttons,

radio buttons, and checkboxes.

Here is a simple hierarchy of a few important objects −

THE DOCUMENT OBJECT

WEB TECHNOLOGIES

29 JAVA SCRIPT, XML

 When an HTML document is loaded into a web browser, it

becomes a document object.

 The document object is the root node of the HTML document

and the "owner" of all other nodes:

(element nodes, text nodes, attribute nodes, and comment

nodes).

 The document object provides properties and methods to

access all node objects, from within JavaScript.

 Tip: The document is a part of the Window object and can be

accessed as window.document.

Properties

alinkColor

-

The color of active links

bgColor

-

Sets the background color of the web page. It is set in

the <body> tag. The following code sets the

background color to white.

Title

-

The name of the current document as described

between the header TITLE tags.

URL

-

The location of the current document.

vlinkColor

-

The color of visited links as specified in the <body> tag

fgColor -

Methods

getElementById(id) - Find an element by element

id

getElementsByTagName(name) - Find elements by tag name

getElementsByClassName(name) - Find elements by class name

write(text) - Write into the HTML output

WEB TECHNOLOGIES

30 JAVA SCRIPT, XML

stream

writeln(text) - Same as write() but adds a

new line at the end of the

output

WINDOW OBJECT:

 The window object is supported by all browsers. It represents

the browser's window.

 All global JavaScript objects, functions, and variables

automatically become members of the window object.

 Global variables are properties of the window object.

 Global functions are methods of the window object.

 Even the document object (of the HTML DOM) is a property of

the window object:

 window.document.getElementById("header");

is the same as:

 document.getElementById("header");

Properties

 defaultStatus - This is the default message that is loaded into the

status bar when the window loads.

 opener The object that caused the window to open.

 status - The status bar is the bar on the lower left side of the

browser and is used to display temporary messages

 length - The number of frames that the window contains.

Methods

 alert("message") - The string passed to the alert function is

displayed in an alert dialog box.

 open("URLname","Windowname",["options"]) - A new window is

opened with the name specified by the second parameter.

WEB TECHNOLOGIES

31 JAVA SCRIPT, XML

 close() - This function will close the current window or the named

window.

 confirm("message") The string passed to the confirm function is

displayed in the confirm dialog box.

 prompt("message","defaultmessage") - A prompt dialog box is

displayed with the message passed as the prompt question or

phrase.

Example:
<HTML>

 <HEAD>

<script>

 function funalert()

 {

 window.alert("Hello be alert....");

 }

 function funopen()

 {

 window.open("http://www.gmail.com");

 }

 function funprompt()

 {

 window.prompt("Do you want to exit?");

 }

 function funconfirm()

 {

 window.confirm("Do you want to exit?");

 }

 function funclose()

 {

 window.close();

 }

WEB TECHNOLOGIES

32 JAVA SCRIPT, XML

</script>

 </HEAD>

 <BODY>

<form>

<input type='button' value='click here for alert()'

onclick='funalert()'>

<input type='button' value='click here for open()'

onclick='funopen()'>

<input type='button' value='click here for prompt()'

onclick='funprompt()'>

<input type='button' value='click here for cofirm()'

onclick='funconfirm()'>

<input type='button' value='click here for close()'

onclick='funclose()'>

</form>

 </BODY>

</HTML>

Output:

WEB TECHNOLOGIES

33 JAVA SCRIPT, XML

FORM OBJECT:
Properties

 action - The action attribute of the Top of Form element

 length - Gives the number of form controls in the form

 method- The method attribute of the Top of Form element

 name - The name attribute of the Top of Form element

 target - The target attribute of the Top of Form element

Methods

 reset()- Resets all form elements to their default values

 submit()- Submits the form

Properties of Form Elements
The following table lists the properties of form elements

 checked - Returns true when checked or false when not

 form - Returns a reference to the form in which it is part of

 length - Number of options in the <select> element.

 name - Accesses the name attribute of the element

 selectedIndex - Returns the index number of the currently

selected item

 value - the value attribute of the element or content of a text

input

STRING OBJECT:
String The string object allows you to deal with strings of text.

Properties

 length - The number of characters in the string.

WEB TECHNOLOGIES

34 JAVA SCRIPT, XML

Methods:

 charAt(index) - Returns a string containing the character at the

specified location.

 indexOf(pattern) - Returns -1 if the value is not found and

returns the index of the first character of the first string matching

the pattern in the string.

 indexOf(pattern, index) - Returns -1 if the value is not found and

returns the index of the first character of the first string matching

the pattern in the string. Searching begins at the index value in

the string.

 lastIndexOf(pattern) - Returns -1 if the value is not found and

returns the index of the first character of the last string matching

the pattern in the string.

 lastIndexOf(pattern, index) - Returns -1 if the value is not found

and returns the index of the first character of the last string

matching the pattern in the string. Searching begins at the index

value in the string.

 split(separator) - Splits a string into substrings based on the

separator character.

 substr(start, length) - Returns the string starting at the "start"

index of the string Continuing for the specified length of

characters unless the end of the string is found first.

 substring(start, end) - Returns the string starting at the "start"

index of the string and ending at "end" index location, less one.

 toLowerCase() - Returns a copy of the string with all characters

in lower case.

 toUpperCase() - Returns a copy of the string with all characters

in upper case.

Example:

<HTML>

WEB TECHNOLOGIES

35 JAVA SCRIPT, XML

 <HEAD>

<script>

 var txt = ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 var sln = txt.length;

 document.writeln(sln);

var str = "Please locate where 'locate' occurs!";

 var pos = str.indexOf("locate");

 document.write("<center>"+pos+"</center>");

 document.write("<center>"+str.toUpperCase()+

 "</center>");

document.write("<center>"+str.toLowerCase()+"</center>");

document.write("<center>"+str.lastIndexOf("locate")+"</center

>");

 document.write("<center>"+str.split(" ")+"</center>");

document.write("<center>"+str.substr(5,10)+"</center>");

</script>

 </HEAD>

 <BODY>

 </BODY>
</HTML>
Output:

WEB TECHNOLOGIES

36 JAVA SCRIPT, XML

ARRAY OBJECT:
The Array object is used to store multiple values in a single variable.

Properties:

 length - Sets or returns the number of elements in an array

Methods:

 concat() - Joins two or more arrays, and returns a copy of the

joined arrays

 indexOf() - Search the array for an element and returns its

position

 join() - Joins all elements of an array into a string

 lastIndexOf() - Search the array for an element, starting at the

end, and returns its position

 pop() - Removes the last element of an array, and returns that

element

 push()- Adds new elements to the end of an array, and returns

the new length

 reverse() - Reverses the order of the elements in an array

 shift() - Removes the first element of an array, and returns

that element

 slice() - Selects a part of an array, and returns the new array

 sort() - Sorts the elements of an array

 splice() - Adds/Removes elements from an array

 toString() - Converts an array to a string, and returns the

result.

Example:
<HTML>

 <HEAD>

 <script>

WEB TECHNOLOGIES

37 JAVA SCRIPT, XML

 var cars = new Array("Saab", "Volvo", "BMW");

 var bikes = new Array("Pulsar", "Honda", "FZ");

 document.write("<center>"+cars.concat(bikes)+

 "</center>");

document.write("<center>"+cars.indexOf("Volvo")+"<

/center>");

 bikes.push("Bajaj");

document.write("<center>"+bikes+"</center>");

 bikes.reverse();

 document.write("<center>"+bikes+"</center>");

 cars.sort();

 document.write("<center>"+cars+"</center>");

</script>

</HEAD>

 <BODY>

 </BODY>

</HTML>

Output:

BROWSER OBJECT/NAVIGATOR OBJECT:
It is used to obtain information about client browser.

Properties
 appName- Returns Browser Name

WEB TECHNOLOGIES

38 JAVA SCRIPT, XML

 appVersion- Returns Browser Version

 appUserAgent- It Returns User Agent

 plugins- It will display Plugins.

 mimeTypes – It will Return Mime type supported by browser

DATE OBJECT:
The Date object is used to work with dates and times

 getDate() - Get the day of the month. It is returned as a value

between 1 and 31.

 getDay() - Get the day of the week as a value from 0 to 6

 getHours() - The value returned is 0 through 23.

 getMinutes() - The value returned is 0 through 59.

 getMonth() - Returns the month from the date object as a

value from 0 through 11.

 getSeconds() - The value returned is 0 through 59.

 getTime() - The number of milliseconds since January 1,

1970.

 getYear() - Returns the numeric four digit value of the year.

 setDate(value) - Set the day of the month in the date object as

a value from 1 to 31.

 setHours(value) - Set the hours in the date object with a value

of 0 through 59.

 setMinutes(value) - Set the minutes in the date object with a

value of 0 through 59.

 setMonth(value) - Set the month in the date object as a value

of 0 through 11.

 setSeconds(value) - Set the seconds in the date object with a

value of 0 through 59.

 setTime(value) - Sets time on the basis of number of

milliseconds since January 1, 1970.

WEB TECHNOLOGIES

39 JAVA SCRIPT, XML

 setYear(value) - Set the year in the date instance as a 4 digit

numeric value.

Example:

<HTML>

 <HEAD>

<script>

 var d=new Date();

document.write("<center>"+d.getDate()+"</center>");

document.write("<center>"+d.getDay()+"</center>");

document.write("<center>"+d.getHours()+"</center>");

document.write("<center>"+d.getMinutes()+"</center>");

document.write("<center>"+d.getMonth()+"</center>");

document.write("<center>"+d.getYear()+"</center>");

document.write("<center>"+d.getTime()+"</center>");

</script>

 </HEAD>

 <BODY>

 </BODY>

</HTML>

WEB TECHNOLOGIES

40 JAVA SCRIPT, XML

Output:

EVENT HANDLING:
JavaScript is an Event Driven System

Event:
An Event is “any change that the user makes to the state of the

browser”

There are 2 types of events that can be used to trigger script:

1. Window Events

2. User Events

1. Window Events, which occurs when

 A page loads or unloads

 Focus is being moved to or away from a window or frame

 After a period of time has elapsed

2. User Events, which occur when the user interacts with elements in

the page using mouse or a keyboard.

Event Handlers:
Event handlers are Javascript functions which you associate

with an HTML element as part of its definition in the HTML source

code.

Syntax: <element attributes eventAttribute=”handler”>

Attribute Description

WEB TECHNOLOGIES

41 JAVA SCRIPT, XML

Onblur The input focus is moved from the object

Onchange
The value of a field in a form has been changes by

the user by entering or deleting data

Onclick Invoked when the user clicked on the object.

Ondblclick Invoked when the user clicked twice on the object.

Onfocus Input focus is given to an element

Onkeydown Invoked when a key was pressed over an element.

Onkeypress
Invoked when a key was pressed over an element

then released.

Onkeyup Invoked when a key was released over an element.

Onload When a page is loaded by the browser

Onmousedown
The cursor moved over the object and

mouse/pointing device was pressed down.

Onmousemove The cursor moved while hovering over an object.

Onmouseout The cursor moved off the object

onmouseover
The cursor moved over the object (i.e. user hovers

the mouse over the object).

Onmouseup
The mouse/pointing device was released after

being pressed down.

Onmove
A window is moved, maximized or restored either

by the user or by the script

Onresize A window is resized by the user or by the script

onmousewheel Invoked when the mouse wheel is being rotated.

Onreset When a form is reset

Onselect

Invoked when some or all of the contents of an

object is selected. For example, the user selected

some text within a text field.

Onsubmit User submitted a form.

Onunload User leaves the Page

WEB TECHNOLOGIES

42 JAVA SCRIPT, XML

Examples:
1. <html>

<head>

<script language="javascript">

function fun()

{

alert("Page is Loaded");

}

</script>

</head>

<body onload="fun()">

</body>

</html>

 Output:

2. <html>

 <head>

 <script language="javascript">

function fun()

{

alert("You Clicked on Button");

}

</script>

</head>

<body>

<input type="button" value="Click Me" onClick="fun()">

WEB TECHNOLOGIES

43 JAVA SCRIPT, XML

</body>

</html>

Output:

<HTML>

 <HEAD>

<script>

 function check()

 {

 var number=form.number.value;

 var i=1;

 while(i<=number)

 {

 if(i%2==0)

 document.write("<center>"+i+"</center>
");

 i++;

 }

 }

</script>

 </HEAD>

 <BODY>

<form name='form' onSubmit='check();'>

<p>Find 1 to n even numbers</p>

WEB TECHNOLOGIES

44 JAVA SCRIPT, XML

<input type='text' name='number'>

<input type='submit' value='Get Even Numbers'>

</form>

 </BODY>

</HTML>

Output:

WEB TECHNOLOGIES

45 JAVA SCRIPT, XML

Math Object:
The math object provides you properties and methods for

mathematical constants and functions. Unlike other global

objects, Math is not a constructor. All the properties and methods

of Math are static and can be called by using Math as an object

without creating it.

Thus, you refer to the constant pi as Math.PI and you call

the sine function as Math.sin(x), where x is the method's argument.

Math Properties (Constants)
JavaScript provides 8 mathematical constants that can be accessed

with the Math object:

Example
Math.E // returns Euler's number

Math.PI // returns PI

Math.SQRT2 // returns the square root of 2

Math.SQRT1_2 // returns the square root of 1/2

Math.LN2 // returns the natural logarithm of 2

Math.LN10 // returns the natural logarithm of 10

Math.LOG2E // returns base 2 logarithm of E

WEB TECHNOLOGIES

46 JAVA SCRIPT, XML

Math.LOG10E // returns base 10 logarithm of E

Math Object Methods

Method Description

abs(x) Returns the absolute value of x

acos(x) Returns the arccosine of x, in radians

acosh(x) Returns the hyperbolic arccosine of x

asin(x) Returns the arcsine of x, in radians

asinh(x) Returns the hyperbolic arcsine of x

atan(x) Returns the arctangent of x as a numeric value

between -PI/2 and PI/2 radians

atan2(y, x) Returns the arctangent of the quotient of its

arguments

atanh(x) Returns the hyperbolic arctangent of x

cbrt(x) Returns the cubic root of x

ceil(x) Returns x, rounded upwards to the nearest integer

cos(x) Returns the cosine of x (x is in radians)

cosh(x) Returns the hyperbolic cosine of x

exp(x) Returns the value of Ex

floor(x) Returns x, rounded downwards to the nearest

integer

log(x) Returns the natural logarithm (base E) of x

max(x, y, z, ...,

n)

Returns the number with the highest value

min(x, y, z, ...,

n)

Returns the number with the lowest value

pow(x, y) Returns the value of x to the power of y

random() Returns a random number between 0 and 1

round(x) Rounds x to the nearest integer

sin(x) Returns the sine of x (x is in radians)

sinh(x) Returns the hyperbolic sine of x

WEB TECHNOLOGIES

47 JAVA SCRIPT, XML

sqrt(x) Returns the square root of x

tan(x) Returns the tangent of an angle

tanh(x) Returns the hyperbolic tangent of a number

trunc(x) Returns the integer part of a number (x)

Example:
<HTML>

 <HEAD>

 <script>

 document.write("<center>"+Math.PI+"</center>
");

document.write("<center>"+Math.ceil(0.991)+"</center>
");

document.write("<center>"+Math.floor(0.991)+"</center>
");

document.write("<center>"+Math.min(12,3,42,55,75,1)+"</center>
");

document.write("<center>"+Math.max(12,3,42,55,75,1)+"</center><b

r>");

document.write("<center>"+Math.pow(5,3)+"</center>
");

document.write("<center>"+Math.sqrt(25)+"</center>
");

document.write("<center>"+Math.random()+"</center>
");

 </script>

 </HEAD>

 <BODY>

 </BODY>

</HTML>

WEB TECHNOLOGIES

48 JAVA SCRIPT, XML

Output:

DHTML WITH JAVASCRIPT:

 It refers to the technique of making web pages dynamic by

client-side scripting to manipulate the document content and

presentation

 Web pages can be made more lively, dynamic or interactive

by DHTML techniques.

 DHTML is not a markup language or a software tool.

 DHTML involves the following aspects.

 HTML - For designing static web pages

 JAVASCRIPT - For browser scripting

 CSS (Cascading Style Sheets) - For style and

presentation control

 DOM(Document Object Model) - An API for scripts

to access and manipulate the web page as a

document.

So, DHTML = HTML + CSS + JAVASCRIPT + DOM
HTML Vs DHTML

WEB TECHNOLOGIES

49 JAVA SCRIPT, XML

HTML DHTML

1. It is used to create

static web pages.

1. Used to create dynamic web

pages.

2. Consists of simple

HTML tags.

2. Made up of HTML

tags+CSS+javascript+DOM

3.
It is a markup

language.

3. It is a technique to make web

pages dynamic through client-

side programming.

4. Do not allow to alter

the text and graphics on

the web page unless

web page gets

changed.

4.
DHTML allows you to alter the

text and graphics of the web

page without changing the entire

web page.

5. Creation of HTML

web pages is simple.

5. Creation of DHTML web pages is

complex.

6. Web pages are less

interactive.

6.
Web pages are more interactive.

7. HTML sites will be

slow upon client-side

technologies.

7.
DHTML sites will be fast enough

upon client-side technologies.

Form Validation:
Form validation normally used to occur at the server, after the

client had entered all the necessary data and then pressed the

Submit button. If the data entered by a client was incorrect or was

simply missing, the server would have to send all the data back to

the client and request that the form be resubmitted with correct

information. This was really a lengthy process which used to put a lot

of burden on the server.

WEB TECHNOLOGIES

50 JAVA SCRIPT, XML

JavaScript provides a way to validate form's data on the client's

computer before sending it to the web server. Form validation

generally performs two functions.

 Basic Validation − First of all, the form must be checked to

make sure all the mandatory fields are filled in. It would

require just a loop through each field in the form and check

for data.

 Data Format Validation − Secondly, the data that is entered

must be checked for correct form and value. Your code must

include appropriate logic to test correctness of data.

Example:
<html>

<head>

<script language="javascript" type="text/javascript">

function validate()

{

if(form.name.value==0)

{

alert("Username should not be empty");

form.name.focus();

return false;

}

if(form.password.value==0)

{

alert("password should not be empty");

form.password.focus();

return false;

}

if(form.password.value.length<6)

WEB TECHNOLOGIES

51 JAVA SCRIPT, XML

{

alert("password length should be greater than 6");

form.password.focus();

return false;

}

return true;

}

</script>

</head>

<body>

<center>

<form name="form" onsubmit="return validate(this);"

action="login.jsp">

<h1>Login Here</h1>

<table>

<tr><td>Enter Name</td><td> <input type="text"

name="name"></td></tr>

<tr><td>Enter Password</td><td> <input type="password"

name="password"></td></tr>

<tr><td colspan='2' align='center'><input type="submit"

value="Login"></td></tr>

</table>

</form>

</center>

</body>

</html>

WEB TECHNOLOGIES

52 JAVA SCRIPT, XML

Output:

Registration page validation Example:
<html>

<head>

<script language="javascript" type="text/javascript">

function validate()

{

if(form.name.value==0)

{

alert("Username should not be empty");

WEB TECHNOLOGIES

53 JAVA SCRIPT, XML

form.name.focus();

return false;

}

if(form.name.value.length<8)

{

alert("Username should be minimum 8 characters");

form.name.focus();

return false;

}

if(form.password.value==0)

{

alert("password should not be empty");

form.password.focus();

return false;

}

if(form.password.value.length<6)

{

alert("password length should be greater than 6");

form.password.focus();

return false;

}

if(form.gender.value==0)

{

alert("please select gender");

form.name.focus();

return false;

}

if(form.address.value==0)

{

alert("Address should not be empty");

form.name.focus();

WEB TECHNOLOGIES

54 JAVA SCRIPT, XML

return false;

}

if(form.mobile.value==0)

{

alert("Mobile num should not be empty");

form.name.focus();

return false;

}

if(form.mobile.value.length<10)

{

alert("Mobile num should be 10 digits");

form.name.focus();

return false;

}

return true;

}

</script>

</head>

<body>

<center>

<form name="form" onsubmit="return validate(this);"

action="login.jsp">

<h1>Register Here</h1>

<table>

<tr><td>Enter Name</td><td> <input type="text"

name="name"></td></tr>

<tr><td>Enter Password</td><td> <input type="password"

name="password"></td></tr>

<tr><td>Select Gender</td><td><input type="radio"

name="gender" value="male">Male<input type="radio"

name="gender" value="female">FeMale</td></tr>

WEB TECHNOLOGIES

55 JAVA SCRIPT, XML

<tr><td>Address</td><td><textarea

name="address"></textarea></td></tr>

<tr><td>Select State</td>

<td>

<select name="country">

<option value="Srilanka">Srilanka

<option value="India">India

<option value="Australia">Australia

</select>

</td>

</tr>

<tr><td>Enter Mobile</td><td> <input type="text"

name="mobile"></td></tr>

<tr><td colspan='2' align='center'><input type="submit"

value="Login"></td></tr>

</table>

</form>

</center>

</body>

</html>

Output:

WEB TECHNOLOGIES

56 JAVA SCRIPT, XML

XML

WEB TECHNOLOGIES

57 JAVA SCRIPT, XML

INTRODUCTION TO XML:

 XML stands for eXtensible Markup Language

 XML is a markup language much like HTML

 XML was designed to store and transport data

 XML was designed to be self-descriptive

 XML is a W3C Recommendation

 The first XML version 1.0, published in 1998.

 HTML limits you to use only fixed number of tags, where

as XML allows to create new tags.

 For example, you are developing website for a college,

then you have tags like <SNO>, <STUDENTNAME>,

<DOB> etc.

 HTML, XML languages are derived from Standard

Generalized Markup Language (SGML).

 XML and related technologies and those are: SGML,

XSL, W3C, SOAP, XSLT, DOM, SAX

 SGML, Standard Generalized Markup Language is basis

for all markup languages.

 XSL, eXtensible Stylesheet Language is a combination of

XML and Style Sheets.

 XSLT, XSL transformations provides rules for

transformations from one XML to another.

 SOAP, Simple Object Access Protocol is communication

protocol for Internet to XML documents and it provides

notifications for events.

WEB TECHNOLOGIES

58 JAVA SCRIPT, XML

 SAX, Simple API for XML, predefined application

package interface.

 DOM, Document Object Model, is another XML Parser.

Uses of XML:

 Easy to organize the document

 Tags or document elements are reusable

 It simplifies data sharing

 Better environment for data transfer

 The XML document is language netural. That means a

Java program can generate an XML document and this

document can be parsed by Perl.

 XML files are independent of an operating system.

 It simplifies data availability

Applications of XML:

 Electronic Commerce (popularly known as E-Commerce)

 Financial Funds Transfer

 Multimedia Messages and Messaging exchange

Differences between XML and HTML:

XML HTML
1. It is used to store the

data.
1. It is used to present the content.

2. It supports user defined
tags.

2. It supports only predefined tags in

3. XML separates content 3. HTML specifies presentation

WEB TECHNOLOGIES

59 JAVA SCRIPT, XML

from presentation.
4. XML allows users to

create new tags
4. HTML doesn't allow users to create

5. You can generate new
mark up languages using
XML

5.No such possibility.

6. XML is case sensitive 6. HTML is not case sensitive
7. Root element is user

defined and only one root
element allowed.

7.Root element is <HTML>

XML Features:

 XML allows the user to define his own tags and his own
document structure.

 XML document is a pure information wrapped in XML
tags.

 XML is a text based language, plain text files can be used
to share data.

 XML provides a software and hardware independent way
of sharing data.

Elements and Attributes:

In XML the basic entity is element the elements are used
for defining the tags. The elements typically consist of opening
and closing tag. Mostly only one element is used to define a
single tag.

 The syntax of writing any element for opening tag is
<element name>

 The syntax of writing any closing element for closing tag
is </element name>

 An empty tag can be defined by putting a / (forward
slash) before closing bracket.

 A space or a tab character is not allowed in the element
name or in attribute name.

WEB TECHNOLOGIES

60 JAVA SCRIPT, XML

Basic Structure / Syntax of an XML Document :

<?xml version=”1.0”?>
<root>
 <child>

<subchild>

</subchild>
</child>

</root>

Example :
Books.xml

<?xml version=”1.0”?>
<bookstore>

<book>
<title> WEB TECHNOLOGIES </title>
<author>Uttam.K.Roy </author>

</book>
<book>

<title> JAVA-Complete Reference </title>
<author>Herbert Schildt </author>

</book>

</bookstore>

If the above Books.xml is opened using any of the browsers
(Example, Internet Explorer), following is the output.

WEB TECHNOLOGIES

61 JAVA SCRIPT, XML

1. Basic Building Blocks

Building block means which all element or part that make a
xml document.

WEB TECHNOLOGIES

62 JAVA SCRIPT, XML

Seen from a DTD point of view, all XML documents are made
up by the following building blocks:

 Elements
 Attributes
 Entities
 PCDATA
 CDATA

Elements
Elements are the main building blocks of both XML and HTML
documents.
Examples of HTML elements are "body" and "table". Examples
of XML elements could be "note" and "message". Elements can
contain text, other elements, or be empty. Examples of empty
HTML elements are "hr", "br" and "img".
Examples:

<body>some text</body>
<message>some text</message>

Attributes

Attributes provide extra information about elements.

Attributes are always placed inside the opening tag of an
element. Attributes always come in name/value pairs. The
following "img" element has additional information about a
source file:

Entities

Some characters have a special meaning in XML, like the less
than sign (<) that defines the start of an XML tag.

WEB TECHNOLOGIES

63 JAVA SCRIPT, XML

Most of you know the HTML entity: " ". This "no-breaking-
space" entity is used in HTML to insert an extra space in a
document. Entities are expanded when a document is parsed by
an XML parser.
The following entities are predefined in XML:

Entity Reference Character

< <
> >

& &
" “
&apos '

PCDATA

PCDATA means parsed character data.
Think of character data as the text found between the start tag
and the end tag of an XML element.
PCDATA is text that WILL be parsed by a parser. The text will
be examined by the parser for entities and markup.
Tags inside the text will be treated as markup and entities will be
expanded.

However, parsed character data should not contain any &, <, or
> characters; these need to be represented by the & <
and > entities, respectively.

CDATA

CDATA means character data.
CDATA is text that will NOT be parsed by a parser. Tags inside
the text will NOT be treated as markup and entities will not be
expanded.

2. Validating an XML file :

WEB TECHNOLOGIES

64 JAVA SCRIPT, XML

An XML file can be validated using the following specifications.
1. DTD (Document type definition)

 2. XML Scheme.

1. DOCUMENT TYPE DEFINITION(DTD):
 The document type definition used to define the basic

building block of any xml document.
 Using DTD we can specify the various elements types,

attributes and their relationship with one another.
 Basically DTD is used to specify the set of rules for

structuring data in any XML file.
 Many developers recommend writing DTDs for the XML

applications.
 DTD standards are defined by the W3C.

 A DTD may contain the following:

 Name of the root element
 Reference to an external DTD
 Element declaration
 Entity declaration

Occurrence indicators in DTD
Operator Syntax Description

None a Exactly one occurrence of a
* a* Zero or more occurrences of

a
+ a+ One or more occurrences of

a
? a? Zero or one occurrence of a

 There are two ways of writing DTDs

1. Internal DTD
2. External DTD

Internal DTD

WEB TECHNOLOGIES

65 JAVA SCRIPT, XML

The DTD can be embedded directly in the XML docement as
a part of it.

The general syntax for an internal DTD is

 <!DOCTYPE root-element [

 <!-- doctype declaration -->

]>

The keyword DOCTYPE specifies that a DTD is to be used
by the document.

The following rules must be followed:

 The keyword DOCTYPE must be in upper case (Well
formedness constraint).

 The document type declaration must appear before the
first element in the document(Well formedness
constraint).

 The name following the word DOCTYPE (root-element in
this case) must match with the name of the root-
element(Top-level element) in the xml document.

Example:
BooksFile.xml

<?xml version="1.0"?>
<!DOCTYPE bookstore [

<!ELEMENT bookstore (book+)>
<!ELEMENT book (title,auther+,price?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT auther (#PCDATA)>]

>
<bookstore>

<book>
<title>WEB TECHNOLOGIES</title>

WEB TECHNOLOGIES

66 JAVA SCRIPT, XML

<author>Uttam.K.Roy </author>
<price>Rs.300 </price>

</book>

<book>
<title>DATA STRUCTURES</title>
<author>Gilberg </author>
<author>Forouzan</author>
<author>Prasad</author>

</book>
</bookstore>

If the above BooksFile.xml is opened using a web browser
like Internet Explorer, the following is the result.

External DTD

In this type, an external DTD file is created and its name must
be specified in the corresponding XML file.

The following example illustrates the use of external DTD.

WEB TECHNOLOGIES

67 JAVA SCRIPT, XML

Step 1: Creation of DTD file [Validatebooks.dtd]

<!DOCTYPE bookstore [
<!ELEMENT bookstore (book+)>
<!ELEMENT book (title,auther+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT auther (#PCDATA)>

]>

Step 2: Creation of XML document [BooksFile.xml]

<?xml version="1.0"?>
<bookstore>

<book>
<title>WEB TECHNOLOGIES</title>
<author>Uttam.K.Roy </author>
<price>Rs.300 </price>

</book>

<book>
<title>DATA STRUCTURES</title>
<author>Gilberg </author>
<author>Forouzan</author>
<author>Prasad</author>

</book>
</bookstore>

