
1

Chapter 2

 Testing Conventional Applications

2

Testability

 Operability—it operates cleanly

 Observability—the results of each test case are readily

observed

 Controllability—the degree to which testing can be

automated and optimized

 Decomposability—testing can be targeted

 Simplicity—reduce complex architecture and logic to

simplify tests

 Stability—few changes are requested during testing

 Understandability—of the design

3

What is a “Good” Test?

 A good test has a high probability of

finding an error

 A good test is not redundant.

 A good test should be “best of breed”

 A good test should be neither too

simple nor too complex

4

Internal and External Views

 Any engineered product (and most other

things) can be tested in one of two ways:

 Knowing the specified function that a product has

been designed to perform, tests can be conducted

that demonstrate each function is fully operational

while at the same time searching for errors in each

function;

 Knowing the internal workings of a product, tests can

be conducted to ensure that "all gears mesh," that is,

internal operations are performed according to

specifications and all internal components have been

adequately exercised.

5

Test Case Design

"Bugs lurk in corners
and congregate at
boundaries ..."

Boris Beizer

OBJECTIVE

 CRITERIA

 CONSTRAINT

to uncover errors

 in a complete manner

 with a minimum of effort and time

6

Exhaustive Testing

loop < 20 X

There are 10 possible paths! If we execute one

 test per millisecond, it would take 3,170 years to

 test this program!!

14

7

Selective Testing

loop < 20 X

Selected path

8

Software Testing

Methods

Strategies

white-box

methods

black-box

 methods

9

White-Box Testing

... our goal is to ensure that all
statements and conditions have

been executed at least once ...

10

Why Cover?
logic errors and incorrect assumptions
are inversely proportional to a path's
execution probability

we often believe that a path is not
likely to be executed; in fact, reality is
often counter intuitive

typographical errors are random; it's
likely that untested paths will contain
some

11

12

13

Basis Path Testing

First, we compute the cyclomatic
complexity:

number of simple decisions + 1

 or

number of enclosed areas + 1

In this case, V(G) = 4

14

Cyclomatic Complexity

A number of industry studies have indicated
that the higher V(G), the higher the probability
or errors.

V(G)

modules

modules in this range are
more error prone

15

Basis Path Testing

Next, we derive the
independent paths:

Since V(G) = 4,
there are four paths

Path 1: 1,2,3,6,7,8

Path 2: 1,2,3,5,7,8

Path 3: 1,2,4,7,8

Path 4: 1,2,4,7,2,4,...7,8

Finally, we derive test
cases to exercise these
paths.

1

2

3
4

5 6

7

8

16

Basis Path Testing Notes

you don't need a flow chart,
but the picture will help when
you trace program paths

count each simple logical test,
compound tests count as 2 or
more

basis path testing should be
applied to critical modules

17

Deriving Test Cases

 Summarizing:

 Using the design or code as a foundation, draw a

corresponding flow graph.

 Determine the cyclomatic complexity of the resultant

flow graph.

 Determine a basis set of linearly independent paths.

 Prepare test cases that will force execution of each

path in the basis set.

18

Graph Matrices

 A graph matrix is a square matrix whose size
(i.e., number of rows and columns) is equal to
the number of nodes on a flow graph

 Each row and column corresponds to an
identified node, and matrix entries correspond
to connections (an edge) between nodes.

 By adding a link weight to each matrix entry,
the graph matrix can become a powerful tool
for evaluating program control structure
during testing

19

20

Control Structure Testing

 Condition testing — a test case design method

that exercises the logical conditions contained

in a program module

 Data flow testing — selects test paths of a

program according to the locations of

definitions and uses of variables in the program

21

Data Flow Testing

 The data flow testing method [Fra93] selects test paths

of a program according to the locations of definitions and

uses of variables in the program.

 Assume that each statement in a program is assigned a

unique statement number and that each function does not

modify its parameters or global variables. For a statement

with S as its statement number

• DEF(S) = {X | statement S contains a definition of X}

• USE(S) = {X | statement S contains a use of X}

 A definition-use (DU) chain of variable X is of the form [X,

S, S'], where S and S' are statement numbers, X is in

DEF(S) and USE(S'), and the definition of X in statement S

is live at statement S'

22

Loop Testing

Nested
Loops

Concatenated

 Loops Unstructured

Loops

Simple
loop

23

Loop Testing: Simple Loops

Minimum conditions—Simple Loops

1. skip the loop entirely

 2. only one pass through the loop

3. two passes through the loop

4. m passes through the loop m < n

5. (n-1), n, and (n+1) passes through
the loop

where n is the maximum number

of allowable passes

24

Loop Testing: Nested Loops

Start at the innermost loop. Set all outer loops to their
minimum iteration parameter values.

 Test the min+1, typical, max-1 and max for the
innermost loop, while holding the outer loops at their
minimum values.

Move out one loop and set it up as in step 2, holding all
other loops at typical values. Continue this step until
the outermost loop has been tested.

If the loops are independent of one another

 then treat each as a simple loop

 else* treat as nested loops

 endif*

for example, the final loop counter value of loop 1 is
used to initialize loop 2.

Nested Loops

Concatenated Loops

25

Black-Box Testing

requirements

events input

output

26

Black-Box Testing

 How is functional validity tested?

 How is system behavior and performance tested?

 What classes of input will make good test cases?

 Is the system particularly sensitive to certain input
values?

 How are the boundaries of a data class isolated?

 What data rates and data volume can the system
tolerate?

 What effect will specific combinations of data have on
system operation?

27

Graph-Based Methods

new

file

menu select generates

(generation time  1.0 sec)

document

window

document

tex
t

is represented as

contains

Attributes:

background color: white

text color: default color
 or preferences

(b)

object
#1

Directed link

(link weight)

object
#2

object

#
3

Undirected link

Parallel links

Node weight
(value

)

(a)

allows editing
of

To understand the

objects that are

modeled in

software and the

relationships that

connect these

objects

In this context, we

consider the term

“objects” in the broadest

possible context. It

encompasses data

objects, traditional

components (modules),

and object-oriented

elements of computer

software.

28

Equivalence Partitioning

user
queries

mouse
picks

output
formats

prompts

FK
input

data

29

Sample Equivalence Classes

user supplied commands

 responses to system prompts

 file names

 computational data

 physical parameters

 bounding values

 initiation values

 output data formatting
responses to error messages

 graphical data (e.g., mouse picks)

data outside bounds of the program
physically impossible data

 proper value supplied in wrong place

Valid data

Invalid data

30

Boundary Value Analysis

user
queries

mouse
picks

output
formats

prompts

FK
input

data

output
domain input domain

31

Comparison Testing

 Used only in situations in which the reliability of

software is absolutely critical (e.g., human-

rated systems)

 Separate software engineering teams develop

independent versions of an application using the

same specification

 Each version can be tested with the same test data

to ensure that all provide identical output

 Then all versions are executed in parallel with real-

time comparison of results to ensure consistency

32

Orthogonal Array Testing

 Used when the number of input parameters is

small and the values that each of the

parameters may take are clearly bounded

One input item at a time L9 orthogonal array

XY

Z

X
Y

Z

Double mode

Multi mode

33

Model-Based Testing

 Analyze an existing behavioral model for the software or
create one.

 Recall that a behavioral model indicates how software will
respond to external events or stimuli.

 Traverse the behavioral model and specify the inputs
that will force the software to make the transition from
state to state.

 The inputs will trigger events that will cause the transition
to occur.

 Review the behavioral model and note the expected
outputs as the software makes the transition from state
to state.

 Execute the test cases.

 Compare actual and expected results and take
corrective action as required.

34

Software Testing Patterns

 Testing patterns are described in much the

same way as design patterns (Chapter 12).

 Example:
• Pattern name: ScenarioTesting

• Abstract: Once unit and integration tests have been

conducted, there is a need to determine whether the

software will perform in a manner that satisfies users.

The ScenarioTesting pattern describes a technique

for exercising the software from the user’s point of

view. A failure at this level indicates that the software

has failed to meet a user visible requirement. [Kan01]

Chapter : Testing Strategies

Strategic approach to software testing

 Generic characteristics of strategic software
testing:
 To perform effective testing, a software team should

conduct effective formal technical reviews. By doing
this, many errors will be eliminated before testing start.

 Testing begins at the component level and works
"outward" toward the integration of the entire
computer-based system.

 Different testing techniques are appropriate at
different points in time.

 Testing is conducted by the developer of the software
and (for large projects) an independent test group.

 Testing and debugging are different activities, but
debugging must be accommodated in any testing
strategy.

Verification and Validation

 Testing is one element of a broader topic that is often
referred to as verification and validation (V&V).

 Verification refers to the set of activities that ensure
that software correctly implements a specific function.

 Validation refers to a different set of activities that
ensure that the software that has been built is traceable
to customer requirements.

 State another way:

 Verification: "Are we building the product right?"

 Validation: "Are we building the right product?“

 The definition of V&V encompasses many of the
activities that are similar to software quality assurance
(SQA).

 V&V encompasses a wide array of SQA activities that include

 Formal technical reviews,

 quality and configuration audits,

 performance monitoring,

 simulation,

 feasibility study,

 documentation review,

 database review,

 algorithm analysis,

 development testing,

 qualification testing, and installation testing

 Testing does provide the last bastion from which quality can
be assessed and, more pragmatically, errors can be
uncovered.

 Quality is not measured only by no. of errors but it is also
measure on application methods, process model, tool,
formal technical review, etc will lead to quality, that is
confirmed during testing.

Organizing for Software Testing

 The people who have built the software are now asked to test the

software.

 This seems harmless in itself; after all, who knows the program

better than its developers?

 Unfortunately, these same developers have a vested interest in

demonstrating that the program is error-free, that it works

according to customer requirements, and that it will be

completed on schedule and within budget.

 Each of these interests mitigate against thorough testing.

 From a psychological point of view, software analysis and design

(along with coding) are constructive tasks. The software

engineer analyzes, models, and then creates a computer program

and its documentation.

 Like any builder, the software engineer is proud of the edifice that

has been built and looks askance at anyone who attempts to tear it

down. When testing commences, there is a subtle, yet definite,

attempt to ―break‖ the thing that the software engineer has built.

 From the point of view of the builder, testing can be considered to be

(psychologically) destructive. So the builder treads lightly,

designing and executing tests that will demonstrate that the

program works, rather than uncovering errors.

 Unfortunately, errors will be present. And, if the software engineer

doesn‘t find them, the customer will!

 There are often a number of misconceptions that you might infer

erroneously from the preceding discussion:

 (1) that the developer of software should do no testing at all,

 (2) that the software should be “tossed over the wall” to strangers who will

test it mercilessly,

 (3) that testers get involved with the project only when the testing steps are

about to begin.

 Each of these statements is incorrect.

 The software developer is always responsible for testing the

individual units(components) of the program, ensuring that each

performs the function or exhibits the behaviour for which it was

designed.

 In many cases, the developer also conducts integration

testing—a testing step that leads to the construction (and test) of

the complete software architecture.

 After the software architecture is complete an independent test

group become involved.

 The role of an independent test group (ITG) is to remove the

inherent problems associated with letting the builder test the

thing that has been built.

 Independent testing removes the conflict of interest that may

otherwise be present.

 After all, ITG personnel are paid to find errors.

 The developer and the ITG work closely throughout a software

project to ensure that thorough tests will be conducted.

 While testing is conducted, the developer must be available to

correct errors that are uncovered.

 The ITG is part of the software development project team in the

sense that it becomes involved during analysis and design and

stays involved (planning and specifying test procedures)

throughout a large project.

 The ITG reports to the software quality assurance organization,

thereby achieving a degree of independence that might not be

possible if it were a part of the software engineering organization.

Software Testing Strategy for

conventional software architecture

 A Software process & strategy for software testing may
also be viewed in the context of the spiral.

 Unit testing begins at the vortex of the spiral and
concentrates on each unit (i.e., component) of the
software.

 Testing progresses by moving outward along the
spiral to integration testing, where the focus is on
design and the construction.

 Another turn outward on the spiral, we encounter
validation testing, where requirements established as
part of software requirements analysis are validated
against the software.

 Finally, we arrive at system testing, where the software
and other system elements are tested as a whole.

 Software process from a procedural point
of view; a series of four steps that are
implemented sequentially.

 Initially, tests focus on each component individually,
ensuring that it functions properly as a unit.

 Unit testing makes heavy use of white-box testing
techniques, exercising specific paths in a module's
control structure.

 Integration testing addresses the issues associated
with the dual problems of verification and program
construction.

 Black-box test case design techniques are the most
prevalent during integration.

 Now, validation testing provides final assurance that
software meets all functional, behavioral, and
performance requirements.

 Black-box testing techniques are used exclusively
during validation.

 Once validated, must be combined with other system
elements (e.g., hardware, people, databases). System
testing verifies that all elements mesh properly and that
overall system function / performance is achieved.

Criteria for Completion of Testing

 There is no definitive answer to state that ―we have done
with testing‖.

 One response to the question is: "You're never done
testing, the burden simply shifts from you (the software
engineer) to your customer." Every time the customer/
user executes a computer program, the program is
being tested.

 Another response is: "You're done testing when you
run out of time (deadline to deliver product to customer)
or you run out of money (spend so much money on
testing).

 But few practitioners would argue with these responses,
a software engineer needs more rigorous criteria for
determining when sufficient testing has been conducted.

 Response that is based on statistical criteria: "No, we
cannot be absolutely predict that the software will never
fail, but relative to a theoretically sound and
experimentally validated statistical model, we have done
sufficient testing to say with 95 percent confidence that
program will not fail.

Strategic Issues
 Specify product requirements in a quantifiable manner long before

testing commences: Quality characteristics such as portability,

maintainability and usability are assessed besides finding the errors.

 State testing objectives explicitly : test effectiveness, test coverage,

meantime-to-failure, the cost to find and fix defects, remaining defect

density or frequency of occurrence, and test work-hours should be

stated within the test plan.

 Understand the users of the software and develop a profile for each

user category : Use cases that describe the interaction scenario for

each class of user can reduce overall testing effort by focusing testing

on actual use of the product.

 Develop a testing plan that emphasizes “rapid cycle testing :Gilb

recommends that a software team ―learn to test in rapid cycles (2

percent of project effort) of customer-useful, at least field ‗trialable,‘

increments of functionality and/or quality improvement.‖ The feedback

generated from these rapid cycle tests can be used to control quality

levels and the corresponding test strategies.

 Build “robust” software that is designed to test itself : Software

should be designed in a manner that uses antibugging

techniques. That is, software should be capable of diagnosing

certain classes of errors. The design should accommodate

automated testing and regression testing.

 Use effective technical reviews as a filter prior to testing :

Technical reviews can be as effective as testing in uncovering

errors. For this reason, reviews can reduce the amount of testing

effort that is required to produce high quality software.

 Conduct technical reviews to assess the test strategy and test

cases themselves :Technical reviews can uncover inconsistencies,

omissions, and outright errors in the testing approach. This saves

time and also improves product quality.

 Develop a continuous improvement approach for the testing

process: The test strategy should be measured. The metrics

collected during testing should be used as part of a statistical

process control approach for software testing.

Unit testing strategies for conventional software

 Focuses verification effort on the smallest unit of
software design – component or module.

 Using the component-level design description as a guide

 important control paths are tested to uncover errors
within the boundary of the module.

 Unit test is white-box oriented, and the step can be
conducted in parallel for multiple components.

 Unit test consists of

 Unit Test Considerations

 Unit Test Procedures

Unit Test Considerations

Contd.

 Module interface - information properly flows
into and out of the program unit under test.

 local data structure - data stored temporarily
maintains its integrity.

 Boundary conditions - module operates
properly at boundaries established to limit or
restrict processing

 Independent paths - all statements in a module
have been executed at least once.

 And finally, all error handling paths are tested.

 Module interfaces are required before any
other test is initiated because If data do not
enter and exit properly, all other tests are
debatable.

 Local data structures should be exercised and
the local impact on global data should be
discovered during unit testing.

 Selective testing of execution paths is an
essential task during the unit test. Test cases
should be designed to uncover errors due to
 Computations,

 Incorrect comparisons, or

 Improper control flow

 Basis path and loop testing are effective
techniques for uncovering a broad array of
path errors.

Errors are commonly found during unit testing

 More common errors in computation are

 misunderstood or incorrect arithmetic precedence

 mixed mode operations,

 incorrect initialization,

 precision inaccuracy,

 incorrect symbolic representation of an expression.

 Comparison and control flow are closely coupled to one
another

 Comparison of different data types,

 Incorrect logical operators or precedence,

 Incorrect comparison of variables

 Improper or nonexistent loop termination,

 Failure to exit when divergent iteration is encountered

 improperly modified loop variables.

 A good design anticipates error conditions and establishes error-

handling paths to reroute or cleanly terminate processing when an

error does occur.

 Yourdon calls this approach antibugging. Unfortunately, there is a

tendency to incorporate error handling into software and then never

test it.

 A true story may serve to illustrate:

 A computer-aided design system was developed under contract. In one

transaction processing module, a practical joker placed the following error

handling message after a series of conditional tests that invoked various

control flow branches: ERROR! THERE IS NO WAY YOU CAN GET HERE.

This “error message” was uncovered by a customer during user training!

 Potential errors that should be tested when error
handling is evaluated are

 Error description is unintelligible.

 Error noted does not correspond to error
encountered.

 Error condition causes system intervention prior
to error handling.

 Exception-condition processing is incorrect.

 Error description does not provide enough
information to assist in the location of the cause
of the error.

 Software often fails at its boundaries. That is, errors
often occur when the nth element of an n-dimensional
array is processed or when the maximum or minimum
allowable value is encountered.

 So BVA test is always be a last task for unit test.

 Test cases that exercise data structure, control flow, and
data values just below, at, and just above maxima and
minima are very likely to uncover errors.

Unit Test Procedures
 Perform before coding or after source code has been

generated.

 A review of design information provides guidance for
establishing test cases. Each test case should be coupled
with a set of expected results.

 Because a component is not a stand-alone program, driver
and/or stub software must be developed for each unit test.

 In most applications a driver is nothing more than a "main
program" that accepts test case data, passes such data to
the component (to be tested), and prints relevant results.

 A stub or "dummy subprogram" uses the subordinate
module's interface, may do minimal data manipulation, prints
verification of entry, and returns control to the module
undergoing testing.

 Stubs serve to replace modules that are subordinate the
component to be tested.

Unit Test Procedures

Unit Test Environment

 Drivers and stubs represent overhead. That is,

both are software that must be written but that

is not delivered with the final software

product.

 In such cases, complete testing can be

postponed until the integration test step

 Unit testing is simplified when a component

with high cohesion is designed.

 When only one function is addressed by a

component, the number of test cases is

reduced and errors can be more easily

predicted and uncovered.

Integration testing
 Integration testing is a systematic technique for constructing the

program structure while at the same time conducting tests to
uncover errors associated with interfacing.

 The objective is to take unit tested components and build a
program structure that has been dictated by design.

 There is often a tendency to attempt non-incremental
integration; that is, to construct the program using a "big bang"
approach.

 A set of errors is encountered. Correction is difficult because
isolation of causes is complicated by the vast expanse of the
entire program.

 Once these errors are corrected, new ones appear and the
process continues in a seemingly endless loop.

 Incremental integration is the exact opposite of the big bang
approach. The program is constructed and tested in small
increments, where errors are easier to isolate and correct;

Top-down Integration
 Top-down integration testing is an incremental

approach to construction of program structure.

 Modules subordinate to the main control module are

incorporated into the structure in either a depth-first or

breadth-first manner.

 Depth-first integration would integrate all components on

a major control path of the structure.

 Selection of a major path is somewhat arbitrary and

depends on application-specific characteristics.

 For example, selecting the left hand path,

 Components M1, M2 , M5 would be integrated first.

 Next, M8 or M6 would be integrated

 The central and right hand control paths are built.

Top down integration

 Breadth-first integration incorporates all

components directly subordinate at each

level, moving across the structure

horizontally.

 Step would be:

components M2, M3, and M4 would be

integrated first

next control level, M5, M6, and so on follows.

Top-down Integration process five steps:

1. The main control module is used as a test driver and stubs are

substituted for all components directly subordinate to the main

control module.

2. Depending on the integration approach selected (i.e., depth or

breadth first), subordinate stubs are replaced one at a time with

actual components.

3. Tests are conducted as each component is integrated

4. On completion of each set of tests, another stub is replaced with

the real component.

5. Regression testing may be conducted to ensure that new errors

have not been introduced.

The process continues from step 2 until the entire program structure is

built.

Problems occur in top-down integration

 Logistic problems can arise

 Most common problems occurs when processing at low

levels in the hierarchy is required to adequately test

upper levels.

 No significant data can flow upward in the program

structure due to stubs replace low level modules at the

beginning of top-down testing. In this case, Tester will have 3

choices

Problems occur in top-down integration

 Delay many tests until stubs are replaced with actual

modules

 develop stubs that perform limited functions that simulate

the actual module

 integrate the software from the bottom of the hierarchy

upward

 Disadvantages of 1 and 2 lose some control over correspondence

between specific test and incorporation of specific modules

 Significant overhead, as stubs become more and more complex

Bottom-up Integration

 Bottom-up integration testing, as its name

implies, begins construction and testing with

atomic modules (i.e., components at the lowest

levels in the program structure)

 Because components are integrated from the

bottom up, processing required for components

subordinate to a given level is always

available and the need for stubs is

eliminated.

Bottom up integration process steps

 Low-level components are combined into

clusters (sometimes called builds) that perform

a specific software sub function.

 A driver (a control program for testing) is

written to coordinate test case input and

output.

 The cluster is tested.

 Drivers are removed and clusters are

combined moving upward in the program

structure.

Bottom up integration

Example

 Components are combined to form clusters

1, 2, and 3. Each of the clusters is tested

using a driver.

 Components in clusters 1 and 2 are

subordinate to Ma.

 Drivers D1 and D2 are removed and the

clusters are interfaced directly to Ma.

Similarly, driver D3 for cluster 3 is removed prior

to integration with module Mb.

 Both Ma and Mb will ultimately be integrated

with component Mc, and so forth.

Regression Testing
 Each time a new module is added as part of integration

testing

 New data flow paths are established

 New I/O may occur

 New control logic is invoked

 Due to these changes, may cause problems with

functions that previously worked flawlessly.

 Regression testing is the re-execution of some subset

of tests that have already been conducted to ensure that

changes have not propagated unintended side

effects.

 Whenever software is corrected, some aspect of the

software configuration (the program, its documentation,

or the data that support it) is changed.

Contd.
 Regression testing is the activity that helps to ensure that

changes do not introduce unintended behavior or

additional errors.

 Regression testing may be conducted manually, by re-

executing a subset of all test cases or using automated

capture/playback tools.

 Capture/playback tools enable the software engineer to capture

test cases and results for subsequent playback and

comparison.

 Regression testing contains 3 diff. classes of test cases:

 A representative sample of tests that will exercise all software

functions

 Additional tests that focus on software functions that are likely to be

affected by the change.

 Tests that focus on the software components that have been

changed.

 As integration testing proceeds, the number

of regression tests can grow quite large.

 Regression test suite should be designed to

include only those tests that address one or

more classes of errors in each of the major

program functions.

 It is impractical and inefficient to re-execute

every test for every program function once a

change has occurred.

Contd.

Smoke Testing
 Smoke testing is an integration testing approach that is commonly

used when software products are being developed.

 It is designed as a pacing mechanism for time-critical projects,
allowing the software team to assess its project on a frequent
basis.

Smoke testing approach activities

 Software components that have been translated into code are
integrated into a ―build.‖
 A build includes all data files, libraries, reusable modules, and

engineered components that are required to implement one or
more product functions.

 A series of tests is designed to expose errors that will keep the build
from properly performing its function.
 The intent should be to uncover ―show stopper‖ errors that have the

highest likelihood of throwing the software project behind schedule.

 The build is integrated with other builds and the entire product is
smoke tested daily.
 The integration approach may be top down or bottom up.

 Frequent tests give both managers and practitioners a realistic

assessment of integration testing progress.

 McConnell describes the smoke test in the following manner:

 The smoke test should exercise the entire system from end to end. It does not

have to be exhaustive, but it should be capable of exposing major problems. The

smoke test should be thorough enough that if the build passes, you can assume

that it is stable enough to be tested more thoroughly.

 Integration risk is minimized.
 Smoke tests are conducted daily, incompatibilities and other

show-stopper errors are uncovered early

 The quality of the end-product is improved.
 Smoke testing is likely to uncover both functional errors and

architectural and component-level design defects. At the
end, better product quality will result.

 Error diagnosis and correction are simplified.
 Software that has just been added to the build(s) is a probable

cause of a newly discovered error.

 Progress is easier to assess.
 Frequent tests give both managers and practitioners a realistic

assessment of integration testing progress.

Smoke Testing benefits

What is a critical module and why should

we identify it?

 As integration testing is conducted, the tester
should identify critical modules.

 A critical module has one or more of the
following characteristics:
 Addresses several software requirements,

 Has a high level of control (Program structure)

 Is complex or error prone

 Has definite performance requirements.

 Critical modules should be tested as early as is
possible. In addition, regression tests should
focus on critical module function.

Integration Test Documentation
 An overall plan for integration of the software and a

description of specific tests are documented in a Test
Specification

 It contains a test plan, and a test procedure, is a work
product of the software process, and becomes part of
the software configuration.

 The test plan describes the overall strategy for
integration.

 Testing is divided into phases and builds that address
specific functional and behavioral characteristics of the
software.

 Integration testing might be divided into the following test
phases:
 User interaction

 Data manipulation and analysis

 Display processing and generation

 Database management

 For example, integration testing for the SafeHome security system

might be divided into the following test phases:

 •User interaction (command input and output, display representation,

error processing and representation)

 • Sensor processing (acquisition of sensor output, determination of

sensor conditions, actions required as a consequence of conditions)

 • Communications functions (ability to communicate with central

monitoring station)

 • Alarm processing (tests of software actions that occur when an

alarm is encountered)

Contd.
 Therefore, groups of modules are created to

correspond to each phase.

 The following criteria and corresponding tests
are applied for all test phases:

 Interface integrity- Internal and external
interfaces are tested as each module.

 Functional validity - Tests designed to uncover
functional errors are conducted.

 Information content - associated with local or
global data structures are conducted.

 Performance - to verify performance

Contd.

 A schedule for integration and related topics is also
discussed as part of the test plan.

 Start and end dates for each phase are established

 A brief description of overhead software (stubs and
drivers) concentrates on characteristics that might
require special effort.

 Finally, test environment and resources are described.

 The order of integration and corresponding tests at
each integration step are described.

 A listing of all test cases and expected results is also
included.

 A history of actual test results, problems is recorded
in the Test Specification.

Validation Testing
 Validation testing succeeds when software functions in a

manner that can be reasonably expected by the
customer.

 Like all other testing steps, validation tries to uncover
errors, but the focus is at the requirements level— on
things that will be immediately apparent to the end-user.

 Reasonable expectations are defined in the Software
Requirements Specification— a document that describes
all user-visible attributes of the software.

 Validation testing comprises of

 Validation Test criteria

 Configuration review

 Alpha & Beta Testing

Validation Test criteria
 It is achieved through a series of tests that demonstrate

agreement with requirements.

 A test plan outlines the classes of tests to be conducted and a test
procedure defines specific test cases that will be used to
demonstrate agreement with requirements.

 Both the plan and procedure are designed to ensure that

 all functional requirements are satisfied,

 all behavioral characteristics are achieved,

 all performance requirements are attained,

 documentation is correct,

 other requirements are met

 After each validation test case has been conducted, one of two
possible conditions exist:

1. The function or performance characteristics conform to
specification and are accepted

2. A deviation from specification is uncovered and a deficiency
list is created

Configuration Review

 The intent of the review is to ensure that
all elements of the software
configuration have been properly
developed, are cataloged, and have the
necessary detail to the support phase of
the software life cycle.

 The configuration review, sometimes
called an audit.

Alpha and Beta Testing

 When custom software is built for one customer,
a series of acceptance tests are conducted to
enable the customer to validate all
requirements.

 Conducted by the end-user rather than
software engineers, an acceptance test can
range from an informal "test drive" to a
planned and systematically executed series of
tests.

 Most software product builders use a process
called alpha and beta testing to uncover
errors that only the end-user seems able to
find.

Alpha testing

 The alpha test is conducted at the
developer's site by a customer.

 The software is used in a natural setting
with the developer "looking over the
shoulder" of the user and recording errors
and usage problems.

 Alpha tests are conducted in a controlled
environment.

Beta testing

 The beta test is conducted at one or more customer
sites by the end-user of the software.

 beta test is a "live" application of the software in an
environment that cannot be controlled by the
developer.

 The customer records all problems (real or imagined)
that are encountered during beta testing and reports
these to the developer at regular intervals.

 As a result of problems reported during beta tests,
software engineers make modifications and then
prepare for release of the software product to the
entire customer base.

System Testing
 System testing is actually a series of different

tests whose primary purpose is to fully exercise
the computer-based system.

 Although each test has a different purpose, all
work to verify that system elements have been
properly integrated and perform allocated
functions.

 Types of system tests are:
 Recovery Testing

 Security Testing

 Stress Testing

 Performance Testing,Deployment Testing

Recovery Testing

 Recovery testing is a system test that forces the
software to fail in a variety of ways and
verifies that recovery is properly performed.

 If recovery is automatic (performed by the
system itself), reinitialization, checkpointing
mechanisms, data recovery, and restart are
evaluated for correctness.

 If recovery requires human intervention, that is
mean-time-to-repair (MTTR) is evaluated to
determine whether it is within acceptable limits.

Security Testing
 Security testing attempts to verify that protection mechanisms

built into a system will, in fact, protect it from improper
break through .

 During security testing, the tester plays the role(s) of the
individual who desires to break through the system.

 Given enough time and resources, good security testing will
ultimately penetrate a system.

 The role of the system designer is to make penetration cost
more than the value of the information that will be obtained.

 The tester may attempt to acquire passwords through

externally, may attack the system with custom software

designed to breakdown any defenses that have been

constructed; may browse through insecure data; may

purposely cause system errors.

Stress Testing
 Stress testing executes a system in a manner that demands

resources in abnormal quantity, frequency, or volume.

For example,

1. special tests may be designed that generate ten interrupts per

second

2. Input data rates may be increased by an order of magnitude to

determine how input functions will respond

3. test cases that require maximum memory or other resources are

executed

4. test cases that may cause excessive hunting for disk-resident

data are created

 A variation of stress testing is a technique called sensitivity testing

Performance Testing

 Performance testing occurs throughout all steps in the

testing process.

 Even at the unit level, the performance of an individual

module may be assessed as white-box tests are

conducted.

 Performance tests are often coupled with stress

testing and usually require both hardware and

software instrumentation

 It is often necessary to measure resource utilization

(e.g., processor cycles).

THE ART OF DEBUGGING

 Debugging is the process that results in

the removal of the error.

 Although debugging can and should be an

orderly process, it is still very much an art.

 Debugging is not testing but always

occurs as a consequence of testing.

Debugging Process

Debugging Process

 Results are examined and a lack of correspondence
between expected and actual performance is
encountered (due to cause of error).

 Debugging process attempts to match symptom with
cause, thereby leading to error correction.

 One of two outcomes always comes from debugging
process:

 The cause will be found and corrected,

 The cause will not be found.

 The person performing debugging may suspect a
cause, design a test case to help validate that doubt,
and work toward error correction in an iterative fashion.

Why is debugging so difficult?

1. The symptom may disappear (temporarily) when
another error is corrected.

2. The symptom may actually be caused by non-errors
(e.g., round-off inaccuracies).

3. The symptom may be caused by human error that is
not easily traced (e.g. wrong input, wrongly configure the
system)

4. The symptom may be a result of timing problems,
rather than processing problems.(e.g. taking so much
time to display result).

5. It may be difficult to accurately reproduce input
conditions (e.g., a real-time application in which input
ordering is indeterminate).

6. The symptom may be intermittent (connection

irregular or broken). This is particularly common in

embedded systems that couple hardware and software

7. The symptom may be due to causes that are

distributed across a number of tasks running on

different processors

As the consequences of an error increase, the amount

of pressure to find the cause also increases. Often,

pressure sometimes forces a software developer to fix

one error and at the same time introduce two more.

Debugging Approaches or strategies
 Debugging has one overriding objective: to find and correct the

cause of a software error.

 Three categories for debugging approaches

 Brute force

 Backtracking

 Cause elimination

Brute Force:

 probably the most common and least efficient method for
isolating the cause of a software error.

 Apply brute force debugging methods when all else
fails.

 Using a "let the computer find the error" philosophy,
memory dumps are taken, run-time traces are
invoked, and the program is loaded with WRITE or
PRINT statements

 It more frequently leads to wasted effort and time.

Backtracking:

 common debugging approach that can be used

successfully in small programs.

 Beginning at the site where a symptom has

been open, the source code is traced

backward (manually) until the site of the

cause is found.

Cause elimination

 Is cleared by induction or deduction and

introduces the concept of binary partitioning

(i.e. valid and invalid).

 A list of all possible causes is developed and

tests are conducted to eliminate each.

Correcting the error
 The correction of a bug can introduce other errors and

therefore do more harm than good.

Questions that every software engineer should ask before
making the "correction" that removes the cause of a bug:

 Is the cause of the bug reproduced in another part of
the program? (i.e. cause of bug is logical pattern)

 What "next bug" might be introduced by the fix I'm
about to make? (i.e. cause of bug can be in logic or
structure or design).

 What could we have done to prevent this kind of bug
previously? (i.e. same kind of bug might generated
early so developer can go through the steps)

