
.

UNIT - 4

Transport Layer

Outline

3.1 INTRODUCTION

3.2 TRANSPORT-LAYER PROTOCOLS

3.3 USER DATAGRAM PROTOCOL

3.4 TRANSMISSION CONTROL PROTOCOL

 Process-to-Process Communication

 Addressing: Port Numbers

 ICANN Ranges

 Well-known ports

 Registered ports

 Dynamic ports

 Encapsulation and Decapsulation

 Multiplexing and Demultiplexing

INTRODUCTION

 Flow Control

 Pushing or Pulling

 Flow Control at Transport Layer

 Buffers

 Error Control

 Combination of Flow and Error Control

 Sequence Numbers

 Acknowledgment

 Sliding Window

INTRODUCTION

 Congestion Control

 Connectionless and Connection-Oriented

 Connectionless Service

 Connection-Oriented Service

 Finite State Machine

INTRODUCTION

INTRODUCTION

• The transport layer provides a process-to-process

communication between two application layers.

• Communication is provided using a logical connection, which

means that the two Transport layers assume that there is an

imaginary direct connection through which they can send and

receive messages.

• The transport layer is located between the network layer and

the application layer. The transport layer is responsible for

providing services to the application layer; it receives services

from the network layer.

Logical connection at the transport layer

Process-to-Process Communication

• The first duty of a transport-layer protocol is to provide process-

to-process communication. A process is an application-layer

entity (running program) that uses the services of the transport

layer.

• A network-layer protocol can deliver the message only to the

destination computer. However, this is an incomplete delivery.

The message still needs to be handed to the correct process.

This is where a transport-layer protocol takes over. A transport-

layer protocol is responsible for delivery of the message to the

appropriate process.

Network layer versus transport layer

Addressing: Port Numbers

• A process on the local host, called a client, needs services from a process

usually on the remote host, called a server.

• The local host and the remote host are defined using IP addresses

• To define the processes, we need second identifiers, called port numbers.

• In the TCP/IP protocol suite, the port numbers are integers between 0 and

65,535 (16 bits).

• ICANN has divided the port numbers into three ranges:

• Well-known ports. The ports ranging from 0 to 1,023 are assigned and

controlled by ICANN. These are the well-known ports.

• Registered ports. The ports ranging from 1,024 to 49,151 are not assigned

or controlled by ICANN. They can only be registered with ICANN to

prevent duplication.

• Dynamic ports. The ports ranging from 49,152 to 65,535 are neither

controlled nor registered. They can be used as temporary or private port

numbers

Port numbers

ICANN ranges

The client program defines itself with a port number, called the ephemeral

port number.

The server process must also define itself with a port number. This port

number, however, cannot be chosen randomly. TCP/IP has decided to use

universal port numbers for servers; these are called well-known port

numbers(for standardardized Client-server applications)

IP addresses versus port numbers

In UNIX, the well-known ports are stored in a file called

/etc/services. We can use the grep utility to extract the line

corresponding to the desired application.

SNMP (see Chapter 9) uses two port numbers (161 and

162), each for a different purpose.

Socket address

• To use services in the Internet, we need a pair of socket addresses: the

client socket address and the server socket address at each end, to make a

connection.

• The combination of an IP address and a port number is called a socket

address

Encapsulation and decapsulation

• Encapsulation happens at the sender site. The transport layer receives the data and

adds the transport-layer header(i.e. port address, and other information). The packets

at the transport layers in the Internet are called user datagrams, segments, or

packets, depending on what transport-layer protocol we use.

• Decapsulation happens at the receiver site. When the message arrives at the

destination transport layer, the header is dropped and the transport layer delivers the

message to the process running at the application layer. The sender socket address is

passed to the process in case it needs to respond to the message received.

Multiplexing and demultiplexing

• Whenever an entity accepts items from more than one source, this is

referred to as multiplexing (many to one); whenever an entity delivers

items to more than one source, this is referred to as demultiplexing

(one to many).

• The transport layer at the source performs multiplexing; the transport

layer at the destination performs demultiplexing.

• The transport layer at the client site accepts three messages from the

three processes and creates three packets. It acts as a multiplexer.

• When they arrive at the server, the transport layer does the job of a

demultiplexer and distributes the messages to two different processes.

Multiplexing and demultiplexing

Flow Control

• In communication at the transport layer, we are dealing with four entities:

sender process, sender transport layer, receiver transport layer, and

receiver process.

• The sending process at the application layer is only a producer. It produces

message chunks and pushes them to the transport layer. The sending

transport layer has a double role: it is both a consumer and a producer. It

consumes the messages pushed by the producer. It encapsulates the

messages in packets and pushes them to the receiving transport layer.

• The receiving transport layer also has a double role, it is the consumer for

the packets received from the sender and the producer that decapsulates

the messages and delivers them to the application layer. The last delivery,

however, is normally a pulling delivery; the transport layer waits until the

application-layer process asks for messages.

Pushing or pulling

Flow control at the transport layer

Buffers

• Although flow control can be implemented in several ways, one of the

solutions is normally to use two buffers: one at the sending transport

layer and the other at the receiving transport layer.

• A buffer is a set of memory locations that can hold packets at the sender

and receiver.

• When the buffer of the sending transport layer is full, it informs the

application layer to stop passing chunks of messages; when there are

some vacancies, it informs the application layer that it can pass message

chunks again.

• When the buffer of the receiving transport layer is full, it informs the

sending transport layer to stop sending packets. When there are some

vacancies, it informs the sending transport layer that it can send packets

again.

Error Control

• In the Internet, since the underlying network layer (IP) is unreliable, we

need to make the transport layer reliable if the application requires

reliability.

• Reliability can be achieved to add error control services to the transport

layer. Error control at the transport layer is responsible for:

1. Detecting and discarding corrupted packets.

2. Keeping track of lost and discarded packets and resending them.

3. Recognizing duplicate packets and discarding them.

4. Buffering out-of-order packets until the missing packets arrive.

SEQUENCE NUMBER
• To perform error control, the packets are numbered. We can add a field to

the transport-layer packet to hold the sequence number of the packet.

Packets are numbered sequentially. If the header of the packet allows m bits

for the sequence number, the sequence numbers range from 0 to 2m − 1.

ACKNOWLEDGMENT NUMBER

• We can use both positive and negative signals as error control

• The receiver side can send an acknowledgment (ACK) for each of a

collection of packets that have arrived safe and sound. The receiver can

simply discard the corrupted packets.

TIMERS

• The sender can detect lost packets if it uses a timer.

• When a packet is sent, the sender starts a timer. If an ACK does not arrive

before the timer expires, the sender resends the packet.

Duplicate packets can be silently discarded by the receiver. Out-of-order

packets can be either discarded (to be treated as lost packets by the sender),

or stored until the missing ones arrives.

Error control at the transport layer

COMBINATION OF FLOW AND ERROR CONTROL

• Flow control requires the use of two buffers, one at the sender site and the

other at the receiver site.

• Error control requires the use of sequence and acknowledgment numbers by

both sides.

• These two requirements can be combined if we use two numbered buffers,

one at the sender, one at the receiver.

• At the sender, when a packet is prepared to be sent, we use the number of

the next free location, x, in the buffer as the sequence number of the packet.

When the packet is sent, a copy is stored at memory location x, awaiting the

acknowledgment from the other end. When an acknowledgment related to a

sent packet arrives, the packet is purged and the memory location becomes

free.

• At the receiver, when a packet with sequence number y arrives, it is stored at

the memory location y until the application layer is ready to receive it. An

acknowledgment can be sent to announce the arrival of packet y.

SLIDING WINDOW

• Since the sequence numbers used modulo 2m, a circle can represent the

sequence numbers from 0 to 2m − 1

• The buffer is represented as a set of slices, called the sliding window, that

occupies part of the circle at any time.

• At the sender site, when a packet is sent, the corresponding slice is marked.

When all the slices are marked, it means that the buffer is full and no

further messages can be accepted from the application layer.

• When an acknowledgment arrives, the corresponding slice is unmarked.

• If some consecutive slices from the beginning of the window are unmarked,

the window slides over the range of the corresponding sequence numbers to

allow more free slices at the end of the window.

• Most protocols show the sliding window using linear representation.

Sliding window in circular format

Sliding window in linear format

Congestion Control

• An important issue in a packet-switched network, such as the Internet, is

congestion.

• Congestion in a network may occur if the load on the network—the number

of packets sent to the network—is greater than the capacity of the network—

the number of packets a network can handle.

• Congestion control refers to the mechanisms and techniques that control the

congestion and keep the load below the capacity.

• Congestion at the transport layer is actually the result of congestion at the

network layer, which manifests itself at the transport layer

• TCP, assuming that there is no congestion control at the network layer,

implements its own congestion control mechanism

Connectionless and Connection-Oriented Services

• A transport-layer protocol, like a network-layer protocol, can

provide two types of services: connectionless and connection-

oriented.

• At the transport layer, we are not concerned about the physical

paths of packets (we assume a logical connection between two

transport layers).

• Connectionless service at the transport layer means

independency between packets; connection-oriented means

dependency.

CONNECTIONLESS SERVICE

• In a connectionless service, the source process (application program)

needs to divide its message into chunks of data of the size acceptable

by the transport layer and deliver them to the transport layer one by

one.

• The transport layer treats each chunk as a single unit without any

relation between the chunks. When a chunk arrives from the

application layer, the transport layer encapsulates it in a packet and

sends it.

• Problems such as lost packets, out of order delivery exists in such

mechanism.

• We can say that no flow control, error control, or congestion control

can be effectively implemented in a connectionless service.

• A well known real time protocol used for Connectionless service is

UDP.

 Connectionless service

CONNECTION-ORIENTED SERVICE

• In a connection-oriented service, the client and the server first

need to establish a logical connection between themselves.

• The data exchange can only happen after the connection

establishment.

• One completed the data exchange the connection is closed

• We can implement flow control, error control, and congestion

control in a connection oriented protocol.

• A well known real time protocol used for Connection oriented

service is TCP.

Connection-oriented service

Packet 2

FINITE STATE MACHINE

• The behavior of a transport-layer protocol, both when it provides a

connectionless and when it provides a connection-oriented protocol, can

be better shown as a finite state machine (FSM).

• In a connectionless service mechanism, there is only one state i.e. both

ends are always in the established state.

• In a connection oriented mechanism, there are totally six states:

 Open-wait-I

 Open-wait-II

 Established

 Close-wait-I

 Close-wait-II

 Closed

Connectionless and connection-oriented service represented as FSMs

.

UNIT - 4

Transport Layer

Outline

3.1 INTRODUCTION

3.2 TRANSPORT-LAYER PROTOCOLS

 Simplex Protocol

 Stop-and-Wait Protocol

 Go-Back-N Protocol (GBN)

 Selective-Repeat Protocol

 Bidirectional Protocols: Piggybacking

3.3 INTERNET TRANSPORT-LAYER PROTOCOLS

 User Datagram Protocol (UDP)

 Transmission Control Protocol (TCP)

 Sequence Numbers

 Acknowledgment Numbers

 Send Window

 Receive Window

 Timers

 Resending packets

 FSMs (Sender & Reciver)

Simplex Protocol

• Used in Noiseless channels

• Simple connectionless protocol with neither flow nor error control

• The transport layer at the sender gets a message from its application layer,

makes a packet out of it, and sends the packet.

• The transport layer at the receiver receives a packet from its network layer,

extracts the message from the packet, and delivers the message to its

application layer.

• No acknowledgement and no sequence number.

• Each FSM has only one state, the ready state.

Flow diagram

FSMs for the simplex protocol

Simplex protocol

Stop and Wait protocol

• It is a connection-oriented protocol

• Uses both flow and error control

• Both the sender and the receiver use a sliding window of size 1.

• The sender sends one packet at a time and waits for an acknowledgment

before sending the next one.

• To detect corrupted packets, we need to add a checksum to each data

packet, if checksum not correct the packet is discarded.

• Every time the sender sends a packet, it starts a timer. If an

acknowledgment arrives before the timer expires, the timer is stopped

and the sender sends the next packet (if it has one to send).

• If the timer expires, the sender resends the previous packet, assuming

that the packet was either lost or corrupted. This means that the sender

needs to keep a copy of the packet until its acknowledgment arrives.

• To prevent duplicate packets, the protocol uses sequence numbers and

acknowledgment Numbers

• The sender is initially in the ready state, but it can move between the

ready and blocking state.

• The receiver is always in the ready state

Flow diagram of stop and wait

FSM for the Stop-and-Wait protocol

Shortfalls of Stop and Wait Protocol:

• The Stop-and-Wait protocol is very inefficient if our channel is thick

and long.

• By thick, we mean that our channel has a large bandwidth (high data

rate); by long, we mean the round-trip delay is long.

• The product of these two is called the bandwidth-delay product.

Pipelining:

• In networking and in other areas, a task is often begun before the

previous task has ended. This is known as pipelining.

• There is no pipelining in the Stop-and-Wait protocol because a sender

must wait for a packet to reach the destination and be acknowledged

before the next packet can be sent.

Go-Back-N protocol

• To improve the efficiency of transmission, multiple packets must be in

transition while the sender is waiting for acknowledgment. i.e. using

the concept of pipelining.

• A simple protocol that can achieve this goal is called Go-Back-N (GBN)

• The key to Go-back-N is that we can send several packets before

receiving acknowledgments, but the receiver can only buffer one

packet.

• We keep a copy of the sent packets until the acknowledgments arrive.

• The sequence numbers are modulo 2m, where ‘m’ is the size of the

sequence number field in bits.

• An acknowledgment number in this protocol is cumulative and defines

the sequence number of the next packet expected

Go-Back-N protocol

Send window for Go-Back-N

• The maximum size of the senders window is 2m − 1.

• The sender needs to wait to find out if the packets sent have been

received or were lost. We call these outstanding packets.

• Three variables are defined:

• Sf (send window, the first outstanding packet),

• Sn (send window, the next packet to be sent), and

• Ssize (send window, size)= 2m − 1.

Sliding the send window

Sliding direction

The send window can slide one or more slots when an error-free ACK with

ackNo greater than or equal Sf and less than Sn (in modular arithmetic)

arrives.

Receive window for Go-Back-N

• The receive window makes sure that the correct data packets are received

and that the correct acknowledgments are sent. In Go-back-N, the size of the

receive window is always 1.

• Only one variable: Rn (receive window, next packet expected).

• Only a packet with a sequence number matching the value of Rn is accepted

and acknowledged

• When a correct packet is received, the window slides, Rn = (Rn + 1) modulo 2m

Flow diagram for reliability on senders side

Flow diagram for unreliability in senders site

FSMs for the Go-Back-N protocol

Send window size for Go-Back-N

• Cumulative acknowledgments can help if acknowledgments are delayed

or lost

Shortfalls of Go-Back-N Protocol:

• There is no need to buffer out-of-order packets; they are simply

discarded. However, this protocol is inefficient if the underlying network

protocol loses a lot of packets.

• Each time a single packet is lost or corrupted, the sender resends all

outstanding packets, even though some of these packets may have been

received safe and sound but out of order.

• If the network layer is losing many packets because of congestion in the

network, the resending of all of these outstanding packets makes the

congestion worse, and eventually more packets are lost. This has an

avalanche effect that may result in the total collapse of the network.

The Go-Back-N protocol simplifies the process at the receiver. The

receiver keeps track of only one variable, and there is no need to

buffer out-of-order packets; they are simply discarded.

Another protocol, called the Selective-Repeat (SR) protocol, has

been devised, which, as the name implies, resends only selective

packets, those that are actually lost.

Selective Repeat protocol

Outline of Selective-Repeat

Send window for Selective-Repeat protocol

• The maximum size of the send & receive window is 2m−1.

Receive window for Selective-Repeat protocol

• The Selective-Repeat protocol allows as many packets as the size of

the receive window to arrive out of order and be kept until there is a

set of consecutive packets to be delivered to the application layer.

• Selective-Repeat uses one timer for each outstanding packet.

• GBN treats outstanding packets as a group; SR treats them individually.

• In the Selective-Repeat protocol, an acknowledgment number defines

the sequence number of the error-free packet received.

Flow diagram for selective repeat

FSMs for SR protocol

Selective-Repeat, window size

Bidirectional Protocols

The four protocols we discussed earlier in this section are all

unidirectional: data packets flow in only one direction and

acknowledgments travel in the other direction. In real life, data

packets are normally flowing in both directions: from client to server

and from server to client. This means that acknowledgments also need

to flow in both directions. A technique called piggybacking is used to

improve the efficiency of the bidirectional protocols.

Design of piggybacking in Go-Back-N

Internet Transport-Layer Protocols

.

UNIT - 4

Transport Layer

Outline

3.1 INTRODUCTION

3.2 TRANSPORT-LAYER PROTOCOLS

 Simple Protocol

 Stop-and-Wait Protocol

 Go-Back-N Protocol (GBN)

 Selective-Repeat Protocol

 Bidirectional Protocols: Piggybacking

3.3 INTERNET TRANSPORT-LAYER PROTOCOLS

 USER DATAGRAM PROTOCOL (UDP)

 TRANSMISSION CONTROL PROTOCOL (TCP)

Position of transport-layer protocols in the TCP/IP

protocol suite

Internet Transport-Layer Protocols

Some well-known ports used with UDP and TCP

USER DATAGRAM PROTOCOL (UDP)

• The User Datagram Protocol (UDP) is a

connectionless, unreliable transport protocol.

• It does not add anything to the services of IP

except for providing process-to-process

instead of host-to-host communication.

• UDP is a very simple protocol using a

minimum of overhead.

User Datagram

UDP packets, called user datagrams, have a fixed size header of 8

bytes made of four fields, each of 2 bytes (16 bits). the format of a

user datagram. The first two fields define the source and destination

port numbers. The third field defines the total length of the user

datagram, header plus data. The 16 bits can define a total length of 0

to 65,535 bytes.

User datagram packet format

The following is the contents of a UDP header in

hexadecimal format.

Example

a. What is the source port number?

b. What is the destination port number?

 c. What is the total length of the user datagram?

 d. What is the length of the data?

e. Is the packet directed from a client to a server or vice

 versa?

f. What is the client process?

Solution

 a. The source port number is the first four hexadecimal

 digits (CB84)16 or 52100

b. The destination port number is the second four

 hexadecimal digits (000D)16 or 13.

c. The third four hexadecimal digits (001C)16 define the

 length of the whole UDP packet as 28 bytes.

d. The length of the data is the length of the whole packet

 minus the length of the header, or 28 − 8 = 20 bytes.

e. Since the destination port number is 13 (well-known

 port), the packet is from the client to the server.

 f. The client process is the Daytime (see Table 3.1).

UDP Services

Earlier we discussed the general services provided by a transport-layer

protocol. In this section, we discuss what portions of those general

services are provided by UDP.

 Process-to-Process Communication

UDP provides process-to-process communication using socket addresses, a combination of IP

addresses and port numbers.

UDP Services

 Connectionless Services

• There is no connection establishment and no connection termination

• This means that each user datagram sent by UDP is an independent datagram. There is no

relationship between the different user datagrams even if they are coming from the same

source process and going to the same destination program.

• The user datagrams are not numbered.

• This means that each user datagram can travel on a different path.

• Only those processes sending short messages, messages less than 65,507 bytes (65,535

minus 8 bytes for the UDP header and minus 20 bytes for the IP header), can use UDP.

UDP Services

 Flow Control

 Error Control

UDP is a very simple protocol. There is no flow control, and hence no window

mechanism.

• There is no error control mechanism in UDP except for the checksum. This means that

the sender does not know if a message has been lost or duplicated.

• When the receiver detects an error through the checksum, the user datagram is silently

discarded.

 Congestion Control

• Since UDP is a connectionless protocol, it does not provide congestion control.

• UDP assumes that the packets sent are small and sporadic and cannot create congestion

in the network.

 Checksum

UDP checksum calculation includes three sections: a pseudoheader, the UDP header, and the

data coming from the application layer.

The pseudoheader is the part of the header of the IP packet in which the user datagram is to

be encapsulated with some fields filled with 0s.

If the checksum does not include the pseudoheader, a user datagram may arrive safe and

sound. However, if the IP header is corrupted, it may be delivered to the wrong host.

The protocol field is added to ensure that the packet belongs to UDP, and not to TCP.

The value of the protocol field for UDP is 17.

If this value is changed during transmission, the checksum calculation at the receiver will

detect it and UDP drops the packet. It is not delivered to the wrong protocol.

Pseudoheader for checksum calculation

 Encapsulation and Decapsulation

 Queuing

 Multiplexing and Demultiplexing

 Comparison : UDP and Simple Protocol

To send a message from one process to another, the UDP protocol encapsulates and

decapsulates messages

At the client site, when a process starts, it requests a port number from the operating

system. Some implementations create both an incoming and an outgoing queue

associated with each process.

In a host running a TCP/IP protocol suite, there is only one UDP but possibly several

processes that may want to use the services of UDP. To handle this situation, UDP

multiplexes and demultiplexes

The only difference is that UDP provides an optional checksum to detect corrupted

packets at the receiver site.

What value is sent for the checksum in one of the following

hypothetical situations?

 a. The sender decides not to include the checksum.

 b. The sender decides to include the checksum, but the

 value of the sum is all 1s.

 c. The sender decides to include the checksum, but the

 value of the sum is all 0s.

Example 3.12

Solution

 a. The value sent for the checksum field is all 0s to show

 that the checksum is not calculated.

b. When the sender complements the sum, the result is all

 0s; the sender complements the result again before

 sending. The value sent for the checksum is all 1s. The

 second complement operation is needed to avoid

 confusion with the case in part a.

c. This situation never happens because it implies that the

 value of every term included in the calculation of the

 sum is all 0s, which is impossible; some fields in the

 pseudoheader have nonzero values.

Example 3.12 (continued)

UDP Applications

Although UDP meets almost none of the criteria we mentioned

earlier for a reliable transport-layer protocol, UDP is preferable

for some applications. The reason is that some services may

have some side effects that are either unacceptable or not

preferable. An application designer sometimes needs to

compromise to get the optimum.

 UDP Features

 Connectionless Service

 Lack of Error Control

 Lack of Congestion Control

A client-server application such as DNS uses the services of

UDP because a client needs to send a short request to a

server and to receive a quick response from it. The request

and response can each fit in one user datagram. Since only

one message is exchanged in each direction, the

connectionless feature is not an issue; the client or server

does not worry that messages are delivered out of order.

A client-server application such as SMTP, which is used in

electronic mail, cannot use the services of UDP because a

user can send a long e-mail message, which may include

multimedia (images, audio, or video). If the application uses

UDP and the message does not fit in one single user

datagram, the message must be split by the application into

different user datagrams. Here the connectionless service

may create problems. The user datagrams may arrive and be

delivered to the receiver application out of order. The

receiver application may not be able to reorder the pieces.

This means the connectionless service has a disadvantage

for an application program that sends long messages.

Assume we are downloading a very large text file from the

Internet. We definitely need to use a transport layer that

provides reliable service. We don’t want part of the file to be

missing or corrupted when we open the file. The delay

created between the deliveries of the parts is not an

overriding concern for us; we wait until the whole file is

composed before looking at it. In this case, UDP is not a

suitable transport layer.

Assume we are using a real-time interactive application,

such as Skype. Audio and video are divided into frames and

sent one after another. If the transport layer is supposed to

resend a corrupted or lost frame, the synchronizing of the

whole transmission may be lost. The viewer suddenly sees a

blank screen and needs to wait until the second transmission

arrives. This is not tolerable. However, if each small part of

the screen is sent using one single user datagram, the

receiving UDP can easily ignore the corrupted or lost packet

and deliver the rest to the application program. That part of

the screen is blank for a very short period of time, which

most viewers do not even notice.

Typical Applications of UDP

• UDP is suitable for a process that requires simple request-response communication with little

concern for flow and error control. It is not usually used for a process such as FTP that needs

to send bulk data

• UDP is suitable for a process with internal flow- and error-control mechanisms. For example,

the Trivial File Transfer Protocol (TFTP) process includes flow and error control. It can easily

use UDP.

• UDP is a suitable transport protocol for multicasting. Multicasting capability is embedded in

the UDP software but not in the TCP software.

• UDP is used for management processes such as SNMP

• UDP is used for some route updating protocols such as Routing Information Protocol (RIP)

• UDP is normally used for interactive real-time applications that cannot tolerate uneven delay

between sections of a received message

.

UNIT - 4

Transport Layer

 INTRODUCTION

 TRANSPORT-LAYER PROTOCOLS

 INTERNET TRANSPORT-LAYER PROTOCOLS

 USER DATAGRAM PROTOCOL (UDP)

 TRANSMISSION CONTROL PROTOCOL (TCP)

TRANSMISSION CONTROL PROTOCOL (TCP)

Transmission Control Protocol (TCP) is a

connection-oriented, reliable protocol. TCP

explicitly defines connection establishment, data

transfer, and connection teardown phases to

provide a connection-oriented service.

TCP uses a combination of GBN and SR protocols

to provide reliability.

TCP Services

 Process-to-Process Communication

 Stream Delivery Service

 Sending and Receiving Buffers

 Segments

 Full-Duplex Communication

 Multiplexing and Demultiplexing

 Connection-Oriented Service

 Reliable Service

 Process-to-Process Communication

TCP Services

• TCP provides process-to-process communication using port numbers.

• Senders port number & Destination Port number are placed in header of TCP Segment

 Stream Delivery Service

• TCP groups a number of bytes together into a packet called a segment

• TCP adds a header to each segment (for control purposes) and delivers the segment to the

network layer for transmission. The segments are encapsulated in an IP datagram and

transmitted. This entire operation is transparent to the receiving process.

• The segments are not necessarily all the same size.

Stream delivery

Sending �
process

Receiving�
process

Stream of bytes

• TCP, unlike UDP, is a stream-oriented protocol.

• TCP, allows the sending process to deliver data as a stream of bytes and allows the

receiving process to obtain data as a stream of bytes.

Sending and receiving buffers

Stream of bytes

Sending �
process

Receiving�
process

• There are two buffers, the sending buffer and the receiving buffer, one for each

direction

• The TCP sender keeps these bytes in the buffer until it receives an acknowledgment.

TCP segments

• TCP groups a number of bytes together into a packet called a segment

• TCP adds a header to each segment (for control purposes) and delivers the segment to the

network layer for transmission. The segments are encapsulated in an IP datagram and

transmitted. This entire operation is transparent to the receiving process.

• The segments are not necessarily all the same size.

 Full-Duplex Communication

TCP offers full-duplex service, where data can flow in both directions at the same time.

Each TCP endpoint then has its own sending and receiving buffer, and segments move in both

directions.

 Multiplexing and Demultiplexing

TCP performs multiplexing at the sender and demultiplexing at the receiver.

However, since TCP is a connection-oriented protocol, a connection needs to be established

for each pair of processes.

 Connection-Oriented Service

TCP is a connection-oriented protocol. With Three Phases:

1. The two TCP’s establish a logical connection between them.

2. Data are exchanged in both directions.

3. The connection is terminated.

TCP is a reliable transport protocol. It uses an acknowledgment mechanism to check the safe

and sound arrival of data.

 Reliable Service

TCP Features

To provide the services mentioned in the previous section, TCP has

several features:

 Numbering System

 Byte Number
• The bytes of data being transferred in each connection are numbered by TCP.

• The numbering starts with an arbitrarily generated number.

• Numbering is independent in each direction.

• TCP chooses an arbitrary number between 0 and 232 − 1 for the number of the first byte

 Sequence Number
• After the bytes have been numbered, TCP assigns a sequence number to each segment

that is being sent. The sequence number, in each direction, is defined as follows:

1. The sequence number of the first segment is the ISN (initial sequence number),

which is a random number.

2. The sequence number of any other segment is the sequence number of the previous

segment plus the number of bytes (real or imaginary) carried by the previous

segment.

 Acknowledgment Number
• TCP is full duplex; when a connection is established, both parties can send and receive

data at the same time

• The value of the acknowledgment field in a segment defines the number of the next

byte a party expects to receive. The acknowledgment number is cumulative.

Suppose a TCP connection is transferring a file of 5,000

bytes. The first byte is numbered 10,001. What are the

sequence numbers for each segment if data are sent in five

segments, each carrying 1,000 bytes?

Solution

The following shows the sequence number for each

segment:

Segment

A packet in TCP is called a segment.

 Format

 Encapsulation

The segment consists of a header of 20 to 60 bytes, followed by data from the application

program.

The header is 20 bytes if there are no options and up to 60 bytes if it contains options.

A TCP segment encapsulates the data received from the application layer. The TCP segment

is encapsulated in an IP datagram, which in turn is encapsulated in a frame at the data-link

layer

TCP segment format

• Source port address (16 bits): defines the port number of the application

program in the host that is sending the segment

• Destination port address (16 bits): defines the port number of the

application program in the host that is receiving the segment

• Sequence number(32 bits): defines the number assigned to the first byte

of data contained in this segment

• Acknowledgment number(32 bits): defines the byte number that the

receiver of the segment is expecting to receive from the other party

• Header length(4 bits): indicates the number of 4-byte words in the TCP

header.

Control Field(6 bits): defines 6 different control bits or flags. One or more

of these bits can be set at a time. These bits enable flow control,

connection establishment and termination, connection abortion, and the

mode of data transfer in TCP.

Window size(16 bits): defines the window size of the sending TCP in bytes.

The maximum size of the window is 65,535 bytes. This value is normally

referred to as the receiving window (rwnd) and is determined by the receiver.

Checksum(16 bits): The calculation of the checksum for TCP follows the same

procedure as the one described for UDP. However, the use of the checksum in

the UDP datagram is optional, whereas the use of the checksum for TCP is

mandatory.

Urgent pointer(16 bits): which is valid only if the urgent flag is set, is

used when the segment contains urgent data. It defines a value that must be

added to the sequence number to obtain the number of the last urgent byte in

the data section of the segment.

Options: There can be up to 40 bytes of optional information in the TCP

header.

Pseudoheader added to the TCP datagram

TCP pseudoheader, the value for the protocol field is 6.

A TCP Connection

TCP is connection-oriented. As discussed before, a

connection-oriented transport protocol establishes a

logical path between the source and destination. All of

the segments belonging to a message are then sent

over this logical path. Using a single logical pathway

for the entire message facilitates the acknowledgment

process as well as retransmission of damaged or lost

frames.

(continued)

 Connection Establishment

 Data Transfer

 Three-Way Handshaking

 SYN Flooding Attack

 Pushing Data

 Urgent Data

 Connection Termination

 Three-Way Handshaking

 Half-Close

 Connection Reset

Connection Establishment

• TCP transmits data in full-duplex mode.

• The connection establishment in TCP is called three-way

handshaking.

• The process starts with the server. The server program tells its TCP

that it is ready to accept a connection. This request is called a passive

open.

• The client program issues a request for an active open.

• The connection establishment is done by exchanging 3 messages

between the two parties:

• SYN segment

• SYN + ACK segment

• ACK segment

• A SYN segment cannot carry data, but it consumes one sequence

number.

• A SYN + ACK segment cannot carry data, but it does consume one

sequence number.

• An ACK segment, if carrying no data, consumes no sequence

number.

Connection establishment using three-way handshaking

Denial of Service attack / SYN flooding attack

• The connection establishment

procedure in TCP is susceptible to a

serious security problem called SYN

flooding attack.

• This SYN flooding attack belongs to a

group of security attacks known as a

denial of service attack

• The server, assuming that the clients

are issuing an active open, allocates

the necessary resources, such as

creating transfer control block (TCB)

tables and setting timers.

• One recent strategy is to postpone

resource allocation until the server

can verify that the connection

request is coming from a valid IP

address, by using what is called a

cookie.

Data transfer

Urgent Pointer

Connection Termination

• Most implementations today allow two options for connection termination:

three-way handshaking and four-way handshaking with a half-close option.

• Three-way handshaking for connection termination includes exchange of

three messages between the two parties:

• FIN segment

• FIN + ACK segment

• ACK segment

• The FIN segment consumes one sequence number if it does not carry

data.

• The FIN + ACK segment consumes only one sequence number if it does

not carry data.

Connection termination using three-way handshaking

Half-close

State Transmission Diagram

To keep track of all the different events happening

during connection establishment, connection

termination, and data transfer, TCP is specified as the

finite state machine (FSM).

 Scenarios

 A Half-Close Scenario

States for TCP

3.32

Time-line diagram for a common scenario

State transition diagram

Transition diagram with half-close connection termination

Windows in TCP

TCP uses two windows (send window and receive

window) for each direction of data transfer, which

means four windows for a bidirectional

communication. To make the discussion simple, we

make an unrealistic unidirectional; the bidirectional

communication can be inferred using two unidirectional

communications with piggybacking.

 Send Window

 Receive Window

Send window in TCP

• The send window size is dictated by the receiver (flow control) and the

congestion in the underlying network (congestion control).

• A send window opens, closes, or shrinks

• The send window in TCP is similar to the one used with the Selective-

Repeat protocol, but with some differences:

 The window size in SR is the number of packets, but the window size in

TCP is the number of bytes. Although actual transmission in TCP occurs

segment by segment, the variables that control the window are

expressed in bytes.

 TCP can store data received from the process and send them later

 The theoretical Selective-Repeat protocol may use several timers for

each packet sent, but as mentioned before, the TCP protocol uses only

one timer.

Send window in TCP

Receive window in TCP

• The receive window opens and closes; in practice, the window should

never shrink.

• There are two differences between the receive window in TCP and the

one we used for SR.

 The first difference is that TCP allows the receiving process to pull

data at its own pace. The receive window size is then always

smaller than or equal to the buffer size

 rwnd = buffer size - number of waiting bytes to be pulled

 Remember that an acknowledgement in SR is selective, defining

the uncorrupted packets that have been received. The major

acknowledgment mechanism in TCP is a cumulative

acknowledgment announcing the next expected byte to receive (in

this way TCP looks like GBN).

Receive window in TCP

Flow Control

As discussed before, flow control balances the rate a

producer creates data with the rate a consumer can use

the data. TCP separates flow control from error

control. In this section we discuss flow control,

ignoring error control. We assume that the logical

channel between the sending and receiving TCP is

error-free.

 (continued)

 Opening and Closing Windows

 Shrinking of Windows

 A Scenario

 Window Shutdown

 Silly Window Syndrome

 Syndrome Created by the Sender

 Syndrome Created by the Receiver

Data flow and flow control feedbacks in TCP

3.43

An example of flow control

Figure shows the reason for this mandate.

Part a of the figure shows the values of the last

acknowledgment and rwnd. Part b shows the situation in

which the sender has sent bytes 206 to 214. Bytes 206 to

209 are acknowledged and purged. The new advertisement,

however, defines the new value of rwnd as 4, in which

210 + 4 < 206 + 12. When the send window shrinks, it

creates a problem: byte 214, which has already been sent, is

outside the window. The relation discussed before forces the

receiver to maintain the right-hand wall of the window to be

as shown in part a, because the receiver does not know

which of the bytes 210 to 217 has already been sent.

described above.

Example

Example

new ackNo + new rwnd ≥ last ackNo + last rwnd

Window Shutdown - the receiver can temporarily shut down the window by sending a rwnd of 0.

Shrinking of Windows

Silly Window Syndrome

 Syndrome Created by the Sender

A serious problem can arise in the sliding window operation when either the

sending application program creates data slowly or the receiving application

program consumes data slowly, or both. Any of these situations results in the

sending of data in very small segments, which reduces the efficiency of the

operation.

• TCP may create a silly window syndrome if it is serving an application

program that creates data slowly, for example, 1 byte at a time.

• The result is a lot of 41-byte segments that are traveling through an

internet.

• The solution is to prevent the sending TCP from sending the data byte by

byte. The sending TCP must be forced to wait and collect data to send in a

larger block. Nagle found an elegant solution.

Nagle’s algorithm is simple:

1. The sending TCP sends the first piece of data it receives from the sending

application program even if it is only 1 byte.

2. After sending the first segment, the sending TCP accumulates data in the

output buffer and waits until either the receiving TCP sends an

acknowledgment or until enough data have accumulated to fill a maximum-

size segment. At this time, the sending TCP can send the segment.

3. Step 2 is repeated for the rest of the transmission. Segment 3 is sent

immediately if an acknowledgment is received for segment 2, or if enough

data have accumulated to fill a maximum-size segment.

If the application program is faster than the network, the segments are

larger (maximum-size segments). If the application program is slower than

the network, the segments are smaller (less than the maximum segment

size).

 Syndrome Created by the Receiver

Suppose that the sending application program creates data in blocks of 1

kilobyte, but the receiving application program consumes data 1 byte at a time.

Two solutions have been proposed:

 Clark’s solution is to send an acknowledgment as soon as the data arrive, but

to announce a window size of zero until either there is enough space to

accommodate a segment of maximum size or until at least half of the receive

buffer is empty.

 The second solution is to delay sending the acknowledgment. This means that

when a segment arrives, it is not acknowledged immediately. The receiver

waits until there is a decent amount of space in its incoming buffer before

acknowledging the arrived segments.

 Delayed acknowledgment also has another advantage: it reduces traffic.

The receiver does not have to acknowledge each segment.

 However, there also is a disadvantage in that the delayed acknowledgment

may result in the sender unnecessarily retransmitting the unacknowledged

segments.

Error Control

TCP is a reliable transport-layer protocol. This means

that an application program that delivers a stream of

data to TCP relies on TCP to deliver the entire stream

to the application program on the other end in order,

without error, and without any part lost or duplicated.

(continued)

 Checksum

 Acknowledgment

 Cumulative Acknowledgment (ACK)

 Selective Acknowledgment (SACK)

 Generating Acknowledgments

 Retransmission

 Retransmission after RTO

 Retransmission after Three Duplicate ACK

 Out-of-Order Segments

(continued)

 FSMs for Data Transfer in TCP

 Sender-Side FSM

 Receiver-Side FSM

 Some Scenarios

 Normal Operation

 Lost Segment

 Fast Retransmission

 Delayed Segment

 Duplicate Segment

 Automatically Corrected Lost ACK

 Correction by Resending a Segment

 Deadlock Created by Lost Acknowledgment

 Checksum

 Acknowledgment

ACK segments do not consume sequence numbers and are not acknowledged.

 Cumulative Acknowledgment (ACK): The receiver advertises the next byte it

expects to receive, ignoring all segments received and stored out of order. This

is sometimes referred to as positive cumulative acknowledgment, or ACK and is

specified as 32-bit ACK field in the TCP header

 Selective Acknowledgment (SACK): A SACK reports a block of bytes that is out of

order, and also a block of bytes that is duplicated, i.e., received more than

once. SACK is implemented as an option at the end of the TCP header.

• Each segment includes a checksum field, which is used to check for a

corrupted segment.

• If a segment is corrupted, as detected by an invalid checksum, the segment is

discarded by the destination TCP and is considered as lost.

 Retransmission

• Retransmission after RTO: The sending TCP maintains one

retransmission time-out (RTO) for each connection. When the

timer matures, i.e. times out, TCP resends the segment in the

front of the queue (the segment with the smallest sequence

number) and restarts the timer. RTO is dynamic in TCP and is

updated based on the round-trip time (RTT) of segments.

• Retransmission after Three Duplicate ACK: To expedite service

throughout the Internet by allowing senders to retransmit without

waiting for a time out, most implementations today follow the

three duplicate ACKs rule and retransmit the missing segment

immediately. This feature is called fast retransmission.

 Out-of-Order Segments

• TCP implementations today do not discard out-of-order segments.

They store them temporarily and flag them as out-of-order segments

until the missing segments arrive.

• TCP guarantees that no out-of-order data are delivered to the

process.

 Generating Acknowledgments

1. When end A sends a data segment to end B, it must

include (piggyback) an acknowledgment that gives the

next sequence number it expects to receive. This rule

decreases the number of segments needed and therefore

reduces traffic.

2. When the receiver has no data to send and it receives an

in-order segment (with expected sequence number) and

the previous segment has already been acknowledged, the

receiver delays sending an ACK segment until another

segment arrives or until a period of time (normally 500

ms) has passed. In other words, the receiver needs to

delay sending an ACK segment if there is only one

outstanding in-order segment. This rule reduces ACK

segments.

3. When a segment arrives with a sequence number that is

expected by the receiver, and the previous in-order

segment has not been acknowledged, the receiver

immediately sends an ACK segment. In other words, there

should not be more than two in-order unacknowledged

segments at any time. This prevents the unnecessary

retransmission of segments that may create congestion in

the network. Normal operation

 Generating Acknowledgments

4. When a segment arrives with an out-of-

order sequence number that is higher

than expected, the receiver immediately

sends an ACK segment announcing the

sequence number of the next expected

segment. This leads to the fast

retransmission of missing segments.

5. When a missing segment arrives, the

receiver sends an ACK segment to

announce the next sequence number

expected. This informs the receiver that

segments reported missing have been

received.

Lost segment

Fast retransmission (Rule-4)

Lost acknowledgment

Deadlock Created by Lost Acknowledgment

Lost acknowledgments may create deadlock if they are not properly handled.

Eg: ack(wsize=0)->sender shutdown Window :: ack(wsize!=0) :: Ack Lost ::

Sender still in shutdown mode

 Generating Acknowledgments

6. If a duplicate segment arrives, the receiver discards the segment, but immediately sends an

acknowledgment indicating the next in-order segment expected. This solves some problems when an ACK

segment itself is lost.

Lost acknowledgment corrected by resending a segment

Simplified FSM for the TCP sender side

Simplified FSM for the TCP receiver side

TCP Congestion Control

TCP uses different policies to handle the congestion in the network.

We describe these policies in this section.

 Congestion Window & Receiver window

 Congestion Detection

 Slow Start: Exponential Increase

 Congestion Avoidance: Additive Increase

 Fast Retransmission/Fast Recovery

 Congestion Policies

 Time out

 Three Selective Acknowledgements

(continued)

 Policy Transition

 Taho TCP

 Reno TCP

 NewReno TCP

 Additive Increase, Multiplicative Decrease

 Congestion Window & Receiver window

TCP is an end-to-end protocol that uses the service of IP. The congestion in the router is in the

IP territory and should be taken care of by IP. IP is a simple protocol with no congestion control.

TCP, itself, needs to be responsible for this problem. TCP cannot ignore the congestion in the

network; it cannot aggressively send segments to the network. The result of such

aggressiveness would hurt the TCP itself

TCP cannot be very conservative, either, sending a small number of segments in each time

interval, because this means not utilizing the available bandwidth of the network. TCP needs to

define policies that accelerate the data transmission when there is no congestion and

decelerate the transmission when congestion is detected.

To control the number of segments to transmit, TCP uses another variable called a congestion

window, cwnd, whose size is controlled by the congestion situation in the network (as we will

explain shortly). The cwnd variable and the rwnd variable together define the size of the send

window in TCP.

Actual window size = minimum (rwnd, cwnd)

 Congestion Detection

 Time out : If a TCP sender does not receive an ACK for a segment or a group

of segments before the time-out occurs, it assumes that the corresponding

segment or segments are lost and the loss is due to congestion.

 Three Selective Acknowledgements: Recall that when a TCP receiver sends a

duplicate ACK, it is the sign that a segment has been delayed, but sending

three duplicate ACKs is the sign of a missing segment, which can be due to

congestion in the network. When a receiver sends three duplicate ACKs, it

means that one segment is missing, but three segments have been received.

(slightly congested)

The TCP sender uses the occurrence of two events as signs of

congestion in the network: time-out and receiving three duplicate

ACKs.

Maximum segment size (MSS)

• The MSS is a value negotiated during the connection establishment,

using an option of the same name

• Each segment is of the same size and carries MSS bytes

 Slow Start: Exponential Increase

• The slow-start algorithm is based on the idea that the size of

the congestion window (cwnd) starts with one maximum

segment size (MSS), but it increases one MSS each time an

acknowledgment arrives. i.e. window size grows

exponentially.

• There must be a threshold to stop this phase. The sender keeps

track of a variable named ssthresh (slow-start threshold).

When the size of the window in bytes reaches this threshold,

slow start stops and the next phase starts.

 Congestion Policies

Slow start, exponential increase

 Congestion Avoidance: Additive Increase

• When the size of the congestion window reaches the slow-start

threshold, the slow-start phase stops and the additive phase

begins. In this algorithm, each time the whole “window” of

segments is acknowledged, the size of the congestion window

is increased by one.

• In the congestion-avoidance algorithm, the size of the

congestion window increases additively until congestion is

detected.

 Fast Retransmission/Fast Recovery

• The fast-recovery algorithm is optional in TCP. The old version

of TCP did not use it, but the new versions try to use it.

 Congestion Policies

Congestion avoidance, additive increase

 Taho TCP

 Reno TCP

 NewReno TCP

Three versions of TCP with different congestion policies

Taho TCP
• The early TCP, known as Taho TCP, used only two different algorithms in their

congestion policy: slow start and congestion avoidance

• Taho TCP treats the two signs used for congestion detection, time-out and

three duplicate ACKs, in the same way.

• When the connection is established, TCP starts the slow-start algorithm and

sets the ssthresh variable to a pre-agreed value (normally a multiple of MSS)

and the cwnd to 1 MSS. Then it continues to congestion avoidance phase.

• If congestion is detected (occurrence of time-out or arrival of three

duplicate ACKs), TCP immediately interrupts this aggressive growth and

restarts a new slow start algorithm by limiting the threshold to half of the

current cwnd and resetting the congestion window to 1.

Example of Taho TCP

FSM for Taho TCP

Taho TCP

Reno TCP

• A newer version of TCP, called Reno TCP, added a new state to the

congestion-control FSM, called the fast-recovery state.

• This version treated the two signals of congestion, time-out and the arrival

of three duplicate ACKs, differently.

• In this version, if a time-out occurs, TCP moves to the slow-start state (or

starts a new round if it is already in this state)

• If three duplicate ACKs arrive, TCP moves to the fast-recovery state and

remains there as long as more duplicate ACKs arrive. The fast-recovery

state is a state somewhere between the slow-start and the congestion-

avoidance states.

• In the fast-recovery state, it behaves like the slow start, in which the

cwnd grows exponentially, but the cwnd starts with the value of

ssthresh plus 3 MSS (instead of 1).

• When TCP enters the fast-recovery state, three major events may occur.

 If duplicate ACKs continue to arrive, TCP stays in this state, but the

cwnd grows exponentially.

 If a time-out occurs, TCP assumes that there is real congestion in the

network and moves to the slow-start state.

 If a new (nonduplicate) ACK arrives, TCP moves to the congestion-

avoidance state, but deflates the size of the cwnd to the ssthresh

value, as though the three duplicate ACKs have not occurred, and

transition is from the slow-start state to the congestion-avoidance

state.

Example of a Reno TCP

FSM for Reno TCP

Reno TCP

New Reno TCP

• A later version of TCP, called NewReno TCP, made an extra optimization

on the Reno TCP.

• When TCP receives three duplicate ACKs, it retransmits the lost segment

until a new ACK (not duplicate) arrives. (Fast Recovery Sate)

• If the new ACK defines the end of the window when the congestion was

detected, TCP is certain that only one segment was lost. However, if the

ACK number defines a position between the retransmitted segment and

the end of the window, it is possible that the segment defined by the ACK

is also lost.

• NewReno TCP retransmits this segment to avoid receiving more and more

duplicate ACKs for it.

New Reno TCP

Additive increase, multiplicative decrease (AIMD)

• Out of the three versions of TCP, the Reno version is most common today.

• If we ignore the slow-start states and short exponential growth during fast

recovery, the TCP congestion window is cwnd = cwnd + (1 / cwnd) when an

ACK arrives (congestion avoidance), and cwnd = cwnd / 2 when congestion is

detected. i.e. Additive increase, multiplicative decrease (AIMD)

TCP Timers

To perform their operations smoothly, most TCP

implementations use at least four timers.

 Retransmission Timer

 Persistence Timer

 Round-Trip Time (RTT)

 Karn’s Algorithm

 Exponential Backoff

 Keepalive Timer

 TIME-WAIT Timer

Retransmission Timer

Round-Trip Time (RTT)

Measured RTT (RTTM)

• How long it takes to send a segment and receive an acknowledgment for it.

This is the measured RTTM.

• In TCP the segments and their acknowledgments do not have a one-to-one

relationship, several segments may be acknowledged together.

• In TCP, there can be only one RTTM measurement in progress at any time.

Smoothed RTT (RTTS)

• Most implementations use a smoothed RTT, called RTTS, which is a

weighted average of RTTM and the previous RTTS

 Retransmission Timer

Deviated RTT

Most implementations do not just use RTTS; they also calculate the RTT

deviation, called RTTD, based on the RTTS and RTTM

Retransmission Time Out (RTO)

The value of RTO is based on the smoothed round trip time and its

deviation.

Example

 Karn’s Algorithm

• Suppose that a segment is not acknowledged during the retransmission time-

out period and is therefore retransmitted. When the sending TCP receives an

acknowledgment for this segment, it does not know if the acknowledgment is

for the original segment or for the retransmitted one.

• Karn’s algorithm is simple: TCP does not consider the RTT of a retransmitted

segment in its calculation of a new RTO.

 Exponential Backoff

• Most TCP implementations use an exponential backoff strategy. The value of

RTO is doubled for each retransmission. So if the segment is retransmitted

once, the value is two times the RTO. If it transmitted twice, the value is four

times the RTO, and so on.

Retransmission and Karn’s algorithm is applied.

 Persistence Timer

• To deal with a zero-window-size advertisement, TCP needs another timer. If the

receiving TCP announces a window size of zero, the sending TCP stops transmitting

segments until the receiving TCP sends an ACK segment announcing a nonzero window

size. This ACK segment can be lost. Both TCP’s might continue to wait for each other

forever (a deadlock).

• To correct this deadlock, TCP uses a persistence timer for each connection. When the

sending TCP receives an acknowledgment with a window size of zero, it starts a

persistence timer.

• When the persistence timer goes off, the sending TCP sends a special segment called

a probe.

• This segment contains only 1 byte of new data. It has a sequence number, but its

sequence number is never acknowledged

• The value of the persistence timer is set to the value of the retransmission time.

However, if a response is not received from the receiver, another probe segment is

sent and the value of the persistence timer is doubled and reset until the value

reaches a threshold (usually 60 s). After that the sender sends one probe segment

every 60 seconds until the window is reopened.

 TIME-WAIT Timer

• The TIME-WAIT (2MSL) timer is used during connection termination. The 2MSL

timer is used when TCP performs an active close and sends the final ACK. The

connection must stay open for 2 MSL amount of time to allow TCP to resend

the final ACK in case the ACK is lost.

• Common values are 30 seconds, 1 minute, or even 2 minutes.

 Keepalive Timer

• A keep alive timer is used in some implementations to prevent a long idle

connection between two TCP’s.

• The time-out is usually 2 hours. If the server does not hear from the client

after 2 hours, it sends a probe segment. If there is no response after 10

probes, each of which is 75 seconds apart, it assumes that the client is down

and terminates the connection.

