
DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

UNIT-III

CHAPTER-I

SOFTWARE DESIGN

Overview of the Design Process

The design process essentially transforms the SRS document into a design document.

Outcome of the Design Process

 Different modules required: The different modules in the solution should be

identified. Each module is a collection of functions and the data shared by these

functions. Each module should accomplish some well-defined tasks out of the overall

responsibility of the software. Each module should be named according to the task it

performs.

 For example, in an academic automation software, the module consisting of the

functions and data necessary to accomplish the task of registration of the students

should be named handle student registration.

 The activities carried out during the design phase (called as design process) transform

the SRS document into the design document.

 Control relationships among modules: A control relationship between two modules

essentially arises due to function calls across the two modules. The control relationships

existing among various modules should be identified in the design document.

 Interfaces among different modules: The interfaces between two modules identifies

the exact data items that are exchanged between the two modules when one module

invokes a function of the other module.

 Data structures of the individual modules: Each module normally stores some data

that the functions of the module need to share to accomplish the overall responsibility

of the module. Suitable data structures for storing and managing the data of a module

need to be properly designed and documented.

 Algorithms required to implement the individual modules: Each function in a

module usually performs some processing activity. The algorithms required to

accomplish the processing activities of various modules need to be carefully designed

and documented with due considerations given to the accuracy of the results, space and

time complexities. Starting with the SRS document the design documents are produced

through iterations over a series of steps. The design documents are reviewed by the

members of the development team to ensure that the design solution conforms to the

requirements specification.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

Classification of Design Activities

 A good software design is seldom realized by using a single step procedure, rather it

requires iterating over a series of steps called the design activities. Let us first classify

the design activities before discussing them in detail. Depending on the order in which

various design activities are performed, we can broadly classify them into two

important stages.

 Preliminary (or high-level) design, and

 Detailed design.

 The meaning and scope of these two stages can vary considerably from one design

methodology to another. However, for the traditional function-oriented design

approach, it is possible to define the objectives of the high-level design as follows:

 The outcome of high-level design is called the program structure or the software

architecture. High-level design is a crucial step in the overall design of a software.

When the high-level design is complete, the problem should have been decomposed

into many small functionally independent modules that are cohesive, have low coupling

among themselves, and are arranged in a hierarchy.

 Many different types of notations have been used to represent a high-level design. A

notation that is widely being used for procedural development is a tree-like diagram

called the structure chart. Another popular design representation techniques called

UML that is being used to document object-oriented design, involves developing

several types of diagrams to document the object-oriented design of a systems.

 Once the high-level design is complete, detailed design is undertaken.

 The outcome of the detailed design stage is usually documented in the form of a module

specification (MSPEC) document. After the high-level design is complete, the problem

would have been decomposed into small modules, and the data structures and

algorithms to be used described using MSPEC and can be easily grasped by

programmers for initiating coding. In this text, we do not discuss MSPECs and confine

our attention to high-level design only.

 Through high-level design, a problem is decomposed into a set of modules. The control

relationships among the modules are identified, and also, the interfaces among various

modules are identified.

 During detailed design each module is examined carefully to design its data structures

and the algorithms.

Classification of Design Methodologies

 The design activities vary considerably based on the specific design methodology being

used. A large number of software design methodologies are available. We can roughly

classify these methodologies into procedural and object-oriented approaches. These

two approaches are two fundamentally different design paradigms.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

Analysis versus design

 Analysis and design activities differ in goal and scope. The analysis results are generic

and does not consider implementation or the issues associated with specific platforms.

The analysis model is usually documented using some graphical formalism. In case of

the function-oriented approach that we are going to discuss, the analysis model would

be documented using data flow diagrams (DFDs),

 whereas the design would be documented using structure chart. On the other hand, for

object-oriented approach, both the design model and the analysis model will be

documented using unified modelling language (UML). The analysis model would

normally be very difficult to implement using a programming language.

HOW TO CHARACTERISE A GOOD SOFTWARE DESIGN?

Coming up with an accurate characterization of a good software design that would hold

across diverse problem domains is certainly not easy. In fact, the definition of a “good”

software design can vary depending on the exact application being designed. For

example, “memory size used up by a program” may be an important way to characterize

a good solution for embedded software development—since embedded applications are

often required to work under severely limited memory sizes due to cost, space, orpower

consumption considerations.

 Correctness: A good design should first of all be correct. That is, it should correctly

implement all the functionalities of the system.

 Understandability: A good design should be easily understandable. Unless a design

solution is easily understandable, it would be difficult to implement and maintain it.

 Efficiency: A good design solution should adequately address resource, time, and cost

optimisation issues.

 Maintainability: A good design should be easy to change. This is an important

requirement, since change requests usually keep coming from the customer even after

product release.

Understandability of a Design: A Major Concern

 While performing the design of a certain problem, assume that we have arrived at a

large number of design solutions and need to choose the best one. Obviously, all

incorrect designs have to be discarded first. Out of the correct design solutions, how

can we identify the best one?

 A good design should help overcome the human cognitive limitations that arise due to

limited short-term memory. A large problem overwhelms design would make the matter

worse. Unless a design solution is easily understandable, it could lead to an

implementation having a large number of defects and at the same time tremendously

pushing up the development costs. Therefore, a good design solution should be simple

and easily understandable. A design that is easy to understand is also easy to develop

and maintain.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

 A complex design would lead to severely increased life cycle costs. Unless a design is

easily understandable, it would require tremendous effort to implement, test, debug,

and maintain it. that about 60 per cent of the total effort in the life cycle of a typical

product is spent on maintenance.

 If the software is not easy to understand, not only would it lead to increased

development costs, the effort required to maintain the product would also increase

manifold. Besides, a design solution that is difficult to understand would lead to a

program that is full of bugs and is unreliable that understandability of a design solution

can be enhanced through clever applications of the principles of abstraction and

decomposition. the human mind, and a poor.

An understandable design is modular and layered

 How can the understandability of two different designs be compared, so that we can

pick the better one? To be able to compare the understandability of two design solutions,

we should at least have an understanding of the general features that an easily

understandable design should possess. A design solution should have the following

characteristics to beeasily understandable:

 It should assign consistent and meaningful names to various design components.

 It should make use of the principles of decomposition and abstraction in good measures

to simplify the design.

Modularity

 A modular design is an effective decomposition of a problem. It is a basic characteristic

of any good design solution. A modular design, in simple words, implies that the

problem has been decomposed into a set of modules that have only limited interactions

with each other.

 Decomposition of a problem into modules facilitates taking advantage of the divide and

conquer principle. If different modules have either no interactions or little interactions

with each other, then each module can be understood separately. This reduces the

perceived complexity of the design solution greatly. To understand why this is so,

remember that it may be very difficult to break a bunch of sticks which have been tied

together, but very easy to break the sticks individually.

 It is not difficult to argue that modularity is an important characteristic of a good design

solution. But, even with this, how can we compare the modularity of two alternate

design solutions? From an inspection of the module structure, it is at least possible to

intuitively form an idea as to which design is more modular.

 For example, consider two alternate design solutions to a problem that are represented

in Figure 5.2, in which the modules M1, M2, etc. have been drawn as rectangles. The

invocation of a module by another module has been shown as an arrow. It can easily be

seen that the design solution of Figure 5.2(a) would be easier to understand since the

interactions among the different modules is low. But, can we quantitatively measure the

modularity of a design solution? Unless we are able to quantitatively measure the

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

modularity of a design solution, it will be hard to say which design solution is more

modular than another.

 Unfortunately, there are no quantitative metrics available yet to directly measure the

modularity of a design. However, we can quantitatively characterize the modularity of

a design solution based on the cohesion and coupling existing in the design.

 A software design with high cohesion and low coupling among modules is the effective

problem decomposition. Such a design would lead to increased productivity during

program development by bringing down the perceived problem complexity.

Layered design

 A layered design is one in which when the call relations among different modules are

represented graphically, it would result in a tree-like diagram with clear layering. In a

layered design solution, the modules are arranged in a hierarchy of layers. A module

can only invoke functions of the modules in the layer immediately below it. The

higher layer modules can be considered to be similar to managers that invoke (order)

the lower layer modules to get certain tasks done.

 A layered design can be considered to be implementing control abstraction, since a

module at a lower layer is unaware of (about how to call) the higher layer modules.

When a failure is detected while executing a module, it is obvious that the modules

below it can possibly be the source of the error.

 This greatly simplifies debugging since one would need to concentrate only on a few

modules to detect the error. We shall elaborate these concepts governing layered

design of modules

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

COHESION AND COUPLING

 We have so far discussed that effective problem decomposition is an important

characteristic of a good design. Good module decomposition is indicated through high

cohesion of the individual modules and low coupling of the modules with each other.

Let us now define what is meant by cohesion and coupling.

 In this section, we first elaborate the concepts of cohesion and coupling. Subsequently,

we discuss the classification of cohesion and coupling.

 Coupling: Intuitively, we can think of coupling as follows. Two modules are said to be

highly coupled, if either of the following two situations arise:

 If the function calls between two modules involve passing large chunks of shared data,

the modules are tightly coupled.

 If the interactions occur through some shared data, then also we say that they are highly

coupled.

 If two modules either do not interact with each other at all or at best interact by passing

no data or only a few primitive data items, they are said to have low coupling.

 Cohesion: To understand cohesion, let us first understand an analogy. Suppose you

listened to a talk by some speaker. You would call the speech to be cohesive, if all the

sentences of the speech played some role in giving the talk a single and focused theme.

Now, we can extend this to a module in a design solution.

 When the functions of the module co-operate with each other for performing a single

objective, then the module has good cohesion. If the functions of the module do very

different things and do not co-operate with each other to perform a single piece of work,

then the module has very poor cohesion

 Functional independence

 By the term functional independence, we mean that a module performs a single task

and needs very little interaction with other modules. Functional independence is a key

to any good design primarily due to the following

 Error isolation: Whenever an error exists in a module, functional independence

reduces the chances of the error propagating to the other modules. The reason behind

this is that if a module is functionally independent, its interaction with other modules is

low. Therefore, an error existing in the module is very unlikely to affect the functioning

of other modules advantages it offers:

 Further, once a failure is detected, error isolation makes it very easy to locate the error.

On the other hand, when a module is not functionally independent, once a failure is

detected in a functionality provided by the module, the error can be potentially in any

of the large number of modules and propagated to the functioning of the module.

 Scope of reuse: Reuse of a module for the development of other applications becomes

easier. The reasons for this is as follows. A functionally independent module performs

some well-defined and precise task and the interfaces of the module with other modules

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

are very few and simple. A functionally independent module can therefore be easily

taken out and reused in a different program. On the other hand, if a module interacts

with several other modules or the functions of a module perform very different tasks,

then it would be difficult to reuse it. This is especially so, if the module accesses the

data (or code) internal to other modules.

 Understandability: When modules are functionally independent, complexity of the

design is greatly reduced. This is because of the fact that different modules can be

understood in isolation, since the modules are independent of each other that

understandability is a major advantage of a modular design. Besides the three we have

listed here, there are many other advantages of a modular design as well. We shall not

list those here, and leave it as an assignment to the reader to identify them.

Classification of Cohesiveness

 Cohesiveness of a module is the degree to which the different functions of the module

co-operate to work towards a single objective. The different modules of a design can

possess different degrees of freedom. However, the different classes of cohesion that

modules can possess

 The cohesiveness increases from coincidental to functional cohesion. That is,

coincidental is the worst type of cohesion and functional is the best cohesion possible.

These different classes of cohesion are elaborated below.

 Coincidental cohesion: A module is said to have coincidental cohesion, if it performs

a set of tasks that relate to each other very loosely, if at all. In this case, we can say that

the module contains a random collection of functions.

 It is likely that the functions have been placed in the module out of pure coincidence

rather than through some thought or design. The designs made by novice programmers

often possess this category of cohesion, since they often bundle functions to modules

rather arbitrarily.

 An example of a module with coincidental cohesion has been shown in Figure 5.4(a).

Observe that the different functions of the module carry out very different and unrelated

activities starting from issuing of library books to creating library member records on

one hand, and handling librarian leave request on the other.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

 Logical cohesion: A module is said to be logically cohesive, if all elements of the

module perform similar operations, such as error handling, data input, data output, etc.

 As an example of logical cohesion, consider a module that contains a set of print

functions to generate various types of output reports such as grade sheets, salary slips,

annual reports, etc.

 Temporal cohesion: When a module contains functions that are related by the fact that

these functions are executed in the same time span, then the module is said to possess

temporal cohesion.

 As an example, consider the following situation. When a computer is booted, several

functions need to be performed. These include initialization of memory and devices,

loading the operating system, etc. When a single module performs all these tasks, then

the module can be said to exhibit temporal cohesion.

 Other examples of modules having temporal cohesion are the following. Similarly, a

module would exhibit temporal cohesion, if it comprises functions for performing

initialization, or start-up, or shut-down of some process.

 Procedural cohesion: A module is said to possess procedural cohesion, if the set of

functions of the module are executed one after the other, though these functions may

work towards entirely different purposes and operate on very different data.

 Consider the activities associated with order processing in a trading house. The

functions login (), place-order (), check-order (), print-bill (), place-order-on-vendor (),

update inventory(), and logout() all do different thing and operate on different data.

However, they are normally executed one after the other during typical order processing

by a sales clerk.

 Communicational cohesion: A module is said to have communicational cohesion, if

all functions of the module refer to or update the same data structure. As an example of

procedural cohesion, consider a module named student in which the different functions

in the module such as admit Student, enter Marks, print Grade Sheet, etc. access and

manipulate data stored in an array named student Records defined within the module.

 Sequential cohesion: A module is said to possess sequential cohesion, if the different

functions of the module execute in a sequence, and the output from one function is input

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

to the next in the sequence. As an example, consider the following situation. In an on-

line store consider that after a customer request for some item, it is first determined if

the item is in stock. In this case, if the functions create-order (), check-item-availability

(), place-order-on-vendor () are placed in a single module, then the module would

exhibit sequential cohesion. Observe that the function create-order () creates an order

that is processed by the function check-item-availability () (whether the items are

available in the required quantities in the inventory) is input to place-order-on-vendor

().

 Functional cohesion: A module is said to possess functional cohesion, if different

functions of the module co-operate to complete a single task. For example, a module

containing all the functions required to manage employees’ pay-roll displays functional

cohesion. In this case, all the functions of the module (e.g., compute Overtime(),

compute Work Hours(), compute Deductions(), etc.) work together to generate the pay

slips of the employees.

 Another example of a module possessing functional cohesion. In this example, the

functions issue-book(), return-book(), query-book(), and find-borrower(), together

manage all activities concerned with book lending. When a module possesses

functional cohesion, then we should be able to describe what the module does using

only one simple sentence. For we can describe the overall responsibility of the module

by saying “It manages the book V lendingprocedure of the library.”

 A simple way to determine the cohesiveness of any given module is as follows. First

examine what do the functions of the module perform. Then, try to write down a

sentence to describe the overall work performed by the module. If you need a compound

sentence to describe the functionality of the module, then it has sequential or

communicational cohesion. If you need words such as “first”, “next”, “after”, “then”,

etc., then it possesses sequential or temporal cohesion. If it needs words such as

“initialize”, “setup”, “shut down”, etc., to define its functionality, then it has temporal

cohesion. We can now make the following observation. A cohesive module is one in

which the functions interact among themselves heavily to achieve a single goal. As a

result, if any of these functions is removed to a different module, the coupling would

increase as the functions would now interact across two different modules.

Classification of Coupling

 The coupling between two modules indicates the degree interdependence between

them. Intuitively, if two modules interchange large amounts of data, then they are highly

interdependent or coupled. We can alternately state this concept as follows.

 The interface complexity is determined based on the number of parameters and the

complexity of the parameters that are interchanged while one module invokes the

functions of the other module.

 Let us now classify the different types of coupling that can exist between two modules.

Between any two interacting modules, any of the following five different types of

coupling can exist. These different types of coupling, in increasing order of their

severities

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

 Data coupling: Two modules are data coupled, if they communicate using an

elementary data item that is passed as a parameter between the two, e.g. an integer, a

float, a character, etc. This data item should be problem related and not used for control

purposes.

 Stamp coupling: Two modules are stamp coupled, if they communicate using a

composite data item such as a record in PASCAL or a structure in C.

 Control coupling: Control coupling exists between two modules, if data from one

module is used to direct the order of instruction execution in another. An example of

control coupling is a flag set in one module and tested in another module.

 Common coupling: Two modules are common coupled, if they share some global data

items.

 Content coupling: Content coupling exists between two modules, if they share code.

That is, a jump from one module into the code of another module can occur. Modern

high-level programming languages such as C do not support such jumps across

modules.

 The degree of coupling increases from data coupling to content coupling. High coupling

among modules not only makes a design solution difficult to understand and maintain,

but it also increases development effort and also makes it very difficult to get these

modules developed independently by different team members.

LAYERED ARRANGEMENT OF MODULES

 The control hierarchy represents the organization of program components in terms of

them call relationships. Thus, we can say that the control hierarchy of a design is

determined by the order in which different modules call each other. Many different

types of notations have been used to represent the control hierarchy. The most common

notation is a treelike diagram known as a structure chart

 However, other notations such as Warnier-Orr [1977, 1981] or Jackson diagrams [1975]

may also be used. Since, Warnier-Orr and Jackson’s notations are not widely used

nowadays, In a layered design solution, the modules are arranged into several layers

based on their call relationships. A module is allowed to call only the modules that are

at a lower layer.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

 That is, a module should not call a module that is either at a higher layer or even in the

same layer. Figure 5.6(a) shows a layered design, whereas Figure 5.6(b) shows a design

that is not layered.

 Figure 5.6(b), is actually not layered since all the modules can be considered to be in

the same layer. In the following, we state the significance of a layered design and

subsequently we explain it.

 In a layered design, the top-most module in the hierarchy can be considered as a

manager that only invokes the services of the lower-level module to discharge its

responsibility. The modules at the intermediate layers offer services to their higher layer

by invoking the services of the lower layer modules and also by doing some work

themselves to a limited extent. The modules at the lowest layer are the worker modules.

These do not invoke services of any module and entirely carry out their responsibilities

by themselves.

 Understanding a layered design is easier since to understand one module, one would

have to at best consider the modules at the lower layers (that is, the modules whose

services it invokes). Besides, in a layered design errors are isolated, since an error in

one module can affect only the higher layer modules. As a result, in case of any failure

of a module, only the modules at the lower levels need to be investigated for the possible

error. Thus, debugging time reduces significantly in a layered design.

 On the other hand, if the different modules call each other arbitrarily, then this situation

would correspond to modules arranged in a single layer. Locating an error would be

both difficult and time consuming. This is because, once a failure is observed, the cause

of failure (i.e. error) can potentially be in any module, and all modules would have to

be investigated for the error.

 Superordinate and subordinate modules: In a control hierarchy, a module that

controls another module is said to be superordinate to it. Conversely, a module

controlled by another module is said to be subordinate to the controller.

 Visibility: A module B is said to be visible to another module A, if A directly calls B.

Thus, only the immediately lower layer modules are said to be visible to a module.

 Control abstraction: In a layered design, a module should only invoke the functions

of the modules that are in the layer immediately below it. In other words, the modules

at the higher layers, should not be visible (that is, abstracted out) to the modules at the

lower layers. This is referred to as control abstraction.

 Depth and width: Depth and width of a control hierarchy provide an indication of the

number of layers and the overall span of control respectively. For the design of Figure

5.6(a), the depth is 3 and width is also 3.

 Fan-out: Fan-out is a measure of the number of modules that are directly controlled by

a given module. In Figure 5.6(a), the fan-out of the module M1 is 3. A design in which

the modules have very high fan-out numbers is not a good design. The reason for this

is that a very high fan-out is an indication that the module lacks cohesion. A module

having a large fan-out (greater than 7) is likely to implement several different functions

and not just a single cohesive function.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

 Fan-in: Fan-in indicates the number of modules that directly invoke a given module.

High fan-in represents code reuse and is in general, desirable in a good design. In Figure

5.6(a), the fan-in of the module M1 is 0, that of M2 is 1, and that of M5 is 2.

APPROACHES TO SOFTWARE DESIGN

 There are two fundamentally different approaches to software design that are in use

today—function-oriented design, and object-oriented design. Though these two design

approaches are radically different; they are complementary rather than competing

techniques. The object-oriented approach is a relatively newer technology and is still

evolving. For development of large programs, the object-oriented approach is becoming

increasingly popular due to certain advantages that it offers. On the other hand,

function-oriented designing is a mature technology and has a large following.

 Function-oriented Design

 The following are the salient features of the function-oriented design approach:

 Top-down decomposition: A system, to start with, is viewed as a black box that provides

certain services (also known as high-level functions) to the users of the system.

 For example, consider a function create-new-library member which essentially creates

the record for a new member, assigns a unique membership number to him, and prints

a bill towards his membership charge. This high-level function may be refined into the

following subfunctions:

 assign-membership-number

 create-member-record

 print-bill

 Each of these subfunctions may be split into more detailed subfunctions and so on.

Centralized system state:

 The system state can be defined as the values of certain data items that determine the response

of the system to a user action or external event. For example, the set of books (i.e. whether

borrowed by different users or available for issue) determines the state of a library automation

system. Such data in procedural programs usually have global scope and are shared by many

modules.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

 For example, in the library management system, several functions such as the following

share data such as member-records for reference and updating:

 create-new-member

 delete-member

 update-member-record

 A large number of function-oriented design approaches have been proposed in the past.

A few of the well-established function-oriented design approaches are as following:

 Structured design by Constantine and Yourdon [1979]

 Jackson’s structured design by Jackson [1975]

 Warnier-Orr methodology [1977, 1981]

 Step-wise refinement by Wirth [1971]

 Hatley and Pirbhai’s Methodology [1987]

Object-oriented Design

 In the object-oriented design (OOD) approach, a system is viewed as being made up of

a collection of objects (i.e., entities). Each object is associated with a set of functions

that are called its methods. Each object contains its own data and is responsible for

managing it. The data internal to an object cannot be accessed directly by other objects

and only through invocation of the methods of the object. The system state is

decentralized since there is no globally shared data in the system and data is stored in

each object.

 For example, in a library automation software, each library member may be a separate

object with its own data and functions to operate on the stored data. The methods

defined for one object cannot directly refer to or change the data of other objects.

 The object-oriented design paradigm makes extensive use of the principles of

abstraction and decomposition as explained below. Objects decompose a system into

functionally independent modules. Objects can also be considered as instances of

abstract data types (ADTs). The ADT concept did not originate from the object-

oriented approach. In fact, ADT concept was extensively used in the ADA programming

language introduced in the 1970s.

 ADT is an important concept that forms an important pillar of object-orientation.

 Data abstraction: The principle of data abstraction implies that how data is exactly

stored is abstracted away. This means that any entity external to the object (that is, an

instance of an ADT) would have no knowledge about how data is exactly stored,

organized, and manipulated inside the object.

 The entities external to the object can access the data internal to an object only by

calling certain well-defined methods supported by the object. Consider an ADT such as

a stack. The data of a stack object may internally be stored in an array, a linearly linked

list, or a bidirectional linked list. The external entities have no knowledge of this and

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

can access data of a stack object only through the supported operations such as push

and pop.

 Data structure: A data structure is constructed from a collection of primitive data

items. Just as a civil engineer builds a large civil engineering structure using primitive

building materials such as bricks, iron rods, and cement; a programmer can construct a

data structure as an organized collection of primitive data items such as integer, floating

point numbers, characters, etc.

 Data type: A type is a programming language terminology that refers to anything that

can be instantiated. For example, int, float, char, etc., are the basic data types supported

by C programming language. Thus, we can say that ADTs are user defined data types.

 In object-orientation, classes are ADTs. Thus, what is the advantage of developing an

application using ADTs? Let us examine the three main advantages of using ADTs in

programs:

 The data of objects are encapsulated within the methods. The encapsulation principle

is also known as data hiding. The encapsulation principle requires that data can be

accessed and manipulated only through the methods supported by the object and not

directly. This localizes the errors. The reason for this is as follows. No program element

is allowed to change a data, except through invocation of one of the methods. So, any

error can easily be traced to the code segment changing the value. That is, the method

that changes a data item, making it erroneous can be easily identified.

 An ADT-based design displays high cohesion and low coupling. Therefore, object-

oriented designs are highly modular.

 Since the principle of abstraction is used, it makes the design solution easily

understandable and helps to manage complexity.

 Similar objects constitute a class. In other words, each object is a member of some class.

Classes may inherit features from a super class. Conceptually, objects communicate by

message passing. Objects have their own internal data. Thus, an object may exist in

different states depending the values of the internal data. In different states, an object

may behave differently.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

UNIT-III

CHAPTER-II

FUNCTION-ORIENTED SOFTWARE DESIGN

Overview of SA/SD Methodology

As the name itself implies, SA/SD methodology involves carrying out two distinct activities:

 Structured analysis (SA)

 Structured design (SD)

The roles of structured analysis (SA) and structured design (SD) have been shown

schematically in Figure 6.1. Observe the following from the figure:

 During structured analysis, the SRS document is transformed into a data flow

diagram (DFD) model.

 During structured design, the DFD model is transformed into a structure chart.

As shown in Figure 6.1, the structured analysis activity transforms the SRS document into a

graphic model called the DFD model. During structured analysis, functional decomposition of

the system is achieved. That is, each function that the system needs to perform is analyzed and

hierarchically decomposed into more detailed functions.

On the other hand, during structured design, all functions identified during structured analysis

are mapped to a module structure. This module structure is also called the high-level design or

the software architecture for the given problem. This is represented using a structure chart.

 The high-level design stage is normally followed by a detailed design stage. During the

detailed design stage, the algorithms and data structures for the individual modules are

designed. The detailed design can directly be implemented as a working system using

a conventional programming language.

 The results of structured analysis can therefore, be easily understood by the user. In

fact, the different functions and data in structured analysis are named using the user’s

terminology. The user can therefore even review the results of the structured analysis

to ensure that it captures all his requirements.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

 In the following section, we first discuss how to carry out structured analysis to

construct the DFD model. Subsequently, we discuss how the DFD model can be

transformed into structured design.

STRUCTURED ANALYSIS

We have already mentioned that during structured analysis, the major processing tasks (high-

level functions) of the system are analyzed, and the data flow among these processing tasks are

represented graphically. Significant contributions to the development of the structured analysis

techniques have been made by Gane and Sarson [1979], and DeMarco and Yourdon [1978].

The structured analysis technique is based on the following underlying principles:

 Top-down decomposition approach.

 Application of divide and conquer principle. Through this each high-level function is

independently decomposed into detailed functions.

 Graphical representation of the analysis results using data flow diagrams (DFDs).

 DFD representation of a problem, as we shall see shortly, is very easy to construct.

Though extremely simple, it is a very powerful tool to tackle the complexity of industry

standard problems.

 Please note that a DFD model only represents the data flow aspects and does not show

the sequence of execution of the different functions and the conditions based on which

a function may or may not be executed. In fact, it completely ignores aspects such as

control flow, the specific algorithms used by the functions, etc. In the DFD terminology,

each function is called a process or a bubble. It is useful to consider each function as a

processing station (or process) that consumes some input data and produces some

output data.

 DFD is an elegant modelling technique that can be used not only to represent the results

of structured analysis of a software problem, but also useful for several other

applications such as showing the flow of documents or items in an organization. how a

DFD can be used to represent the processing activities and flow of material in an

automated car assembling plant. We now elaborate how a DFD model can be

constructed.

Data Flow Diagrams (DFDs)

 The DFD (also known as the bubble chart) is a simple graphical formalism that can be

used to represent a system in terms of the input data to the system, various processing

carried out on those data, and the output data generated by the system.

 The main reason why the DFD technique is so popular is probably because of the fact

that DFD is a very simple formalism—it is simple to understand and use. A DFD model

uses a very limited number of primitive symbols (shown in Figure 6.2) to represent the

functions performed by a system and the data flow among these functions.

 Starting with a set of high-level functions that a system performs, a DFD model

represents the subfunctions performed by the functions using a hierarchy of diagrams.

We had pointed out while discussing the principle of abstraction in Section 1.3.2 that

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

any hierarchical representation is an effective means to tackle complexity. Human mind

is such that it can easily understand any hierarchical model of a system—because in a

hierarchical model, starting with a very abstract model of a system, various details of

the system are slowly introduced through different levels of the hierarchy. The DFD

technique is also based on a very simple set of intuitive concepts and rules. We now

elaborate the different concepts associated with building a DFD model of a system.

Primitive symbols used for constructing DFDs

 There are essentially five different types of symbols used for constructing DFDs. These

primitive symbols are depicted in Figure 6.2. The meaning of these symbols are

explained as follows:

 Function symbol: A function is represented using a circle. This symbol is called a

process or a bubble. Bubbles are annotated with the names of the corresponding

functions (see Figure 6.3).

 External entity symbol: An external entity such as a librarian, a library member, etc.

is represented by a rectangle. The external entities are essentially those physical entities

external to the software system which interact with the system by inputting data to the

system or by consuming the data produced by the system. In addition to the human

users, the external entity symbols can be used to represent external hardware and

software such as another application software that would interact with the software

being modelled.

 Data flow symbol: A directed arc (or an arrow) is used as a data flow symbol. A data

flow symbol represents the data flow occurring between two processes or between an

external entity and a process in the direction of the data flow arrow. Data flow symbols

are usually annotated with the corresponding data names. For example, the DFD in

Figure 6.3(a) shows three data flows—the data item number flowing from the process

read number to validate-number, data-item flowing into read-number, and valid-

numberflowing out of validate-number.

 Data store symbol: A data store is represented using two parallel lines. It represents ab

logical file. That is, a data store symbol can represent either a data structure or a physical

file on disk. Each data store is connected to a process by means of a data flow symbol.

The direction of the data flow arrow shows whether data is being read from or written

into a data store. An arrow flowing in or out of a data store implicitly represents the

entire with the name of the corresponding data items. As an example of a data store,

number is a data store

 Output symbol: The output symbol is as shown in Figure 6.2. The output symbol is

used when a hard copy is produced. The notations that we are following in this text are

closer to the Yourdon’s notations than to the other notations. You may sometimes find

notations in other books that are slightly different than those discussed here. For

example, the data store may look like a box with one end open. That is because, they

may be following notations such as those of Gane and Sarson [1979].

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

Important concepts associated with constructing DFD models

Before we discuss how to construct the DFD model of a system, let us discuss some important

concepts associated with DFDs:

Synchronous and asynchronous operations

 If two bubbles are directly connected by a data flow arrow, then they are synchronous.

This means that they operate at the same speed. An example of such an arrangement is

shown in Figure 6.3(a). Here, the validate-number bubble can start processing only after

the read-number bubble has supplied data to it; and the read-number bubble has to wait

until the validate-number bubble has consumed its data.

 However, if two bubbles are connected through a data store, as in Figure 6.3(b) then the

speed of operation of the bubbles are independent. This statement can be explained

using the following reasoning. The data produced by a producer bubble gets stored in

the data store. It is therefore possible that the producer bubble stores several pieces of

data items, even before the consumer bubble consumes any of them.

Data dictionary

 Every DFD model of a system must be accompanied by a data dictionary. A data

dictionary lists all data items that appear in a DFD model. The data items listed include

all data flows and the contents of all data stores appearing on all the DFDs in a DFD

model. Please remember that the DFD model of a system typically consists of several

DFDs, viz., level 0 DFD, level 1

 DFD, level 2 DFDs, etc., as shown in Figure 6.4 discussed in new subsection. However,

a single data dictionary should capture all the data appearing in all the DFDs

constituting the DFD model of a system.

 For example, a data dictionary entry may represent that the data grossPay consists of

the components regularPay and overtimePay. grossPay = regularPay + overtimePay

For the smallest units of data items, the data dictionary simply lists their name and their

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

type. Composite data items are expressed in terms of the component data items using

certain operators. The operators using which a composite data item can be expressed in

terms of its component data items are discussed subsequently.

 The dictionary plays a very important role in any software development process,

especially for the following reasons:

 A data dictionary provides a standard terminology for all relevant data for use by the

developers working in a project. A consistent vocabulary for data items is very

important, since in large projects different developers of the project have a tendency to

use different terms to refer to the same data, which unnecessarily causes confusion.

 The data dictionary helps the developers to determine the definition of different data

structures in terms of their component elements while implementing the design.

 The data dictionary helps to perform impact analysis. That is, it is possible to determine

the effect of some data on various processing activities and vice versa. Such impact

analysis is especially useful when one wants to check the impact of changing an input

value type, or a bug in some functionality, etc.

Data definition

 Composite data items can be defined in terms of primitive data items using the

following data definition operators.

 + : denotes composition of two data items, e.g. a+b represents data a and b.

 [,,] : represents selection, i.e. any one of the data items listed inside the square bracket

can occur. For example, [a,b] represents either a occurs or b occurs.

 () : the contents inside the brac a+(b) represents either a or a+ b occurs.

 {} : represents iterative data definition, e.g. {name}5 represents five name data.

{name}* represents zero or more instances of name data.

 = : represents equivalence, e.g. a=b+c means that a is a composite data item comprising

of both b and c.

 /**/ : Anything appearing within /* and */ is considered as comment. Ket represents

optional data which may or may not appear.

DEVELOPING THE DFD MODEL OF A SYSTEM

 A DFD model of a system graphically represents how each input data is transformed to

its corresponding output data through a hierarchy of DFDs.

 The DFD model of a system is constructed by using a hierarchy of DFDs (see Figure

6.4). The top level DFD is called the level 0 DFD or the context diagram. This is the

most abstract (simplest) representation of the system (highest level). It is the easiest to

draw and understand.

 At each successive lower level DFDs, more and more details are gradually introduced.

To develop a higher-level DFD model, processes are decomposed into their

subprocesses and the data flow among these subprocesses are identified.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

 To develop the data flow model of a system, first the most abstract representation

(highest level) of the problem is to be worked out. Subsequently, the lower level DFDs

are developed. Level 0 and Level 1 consist of only one DFD each. Level 2 may contain

up to 7 separate DFDs, and level 3 up to 49 DFDs, and so on. However, there is only a

single data dictionary for the entire DFD model.

 All the data names appearing in all DFDs are populated in the data dictionary and the

data dictionary contains the definitions of all the data items.

Context Diagram

 The context diagram is the most abstract (highest level) data flow representation of a

system. It represents the entire system as a single bubble. The bubble in the context

diagram is annotated with the name of the software system being developed (usually a

noun). This is the only bubble in a DFD model, where a noun is used for naming the

bubble.

 The bubbles at all other levels are annotated with verbs according to the main function

performed by the bubble. This is expected since the purpose of the context diagram is

to capture the context of the system rather than its functionality.

 As an example of a context diagram, consider the context diagram a software developed

to automate the book keeping activities of a supermarket (see Figure 6.10). The context

diagram has been labelled as ‘Supermarket software’.

 The name context diagram of the level 0 DFD is justified because it represents the

context in which the system would exist; that is, the external entities who would interact

with the system and the specific data items that they would be supplying the system and

the data items they would be receiving from the system. The various external entities

with which the system interacts and the data flow occurring between the system and the

external entities are represented. The data input to the system and the data output from

the system are represented as incoming and outgoing arrows. These data flow arrows

should be annotated with the corresponding data names.

 To develop the context diagram of the system, we have to analyze the SRS document

to identify the different types of users who would be using the system and the kinds of

data they would be inputting to the system and the data they would be receiving from

the system. Here, the term users of the system also include any external systems which

supply data to or receive data from the system.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

Level 1 DFD

 The level 1 DFD usually contains three to seven bubbles. That is, the system is

represented as performing three to seven important functions. To develop the level 1

DFD, examine the high-level functional requirements in the SRS document. If there are

three to seven high level functional requirements, then each of these can be directly

represented as a bubble in the level 1 DFD. Next, examine the input data to these

functions and the data output by these functions as documented in the SRS document

and represent them appropriately in the diagram.

Decomposition

 Each bubble in the DFD represents a function performed by the system. The bubbles

are decomposed into subfunctions at the successive levels of the DFD model.

Decomposition of a bubble is also known as factoring or exploding a bubble. Each

bubble at any level of DFD is usually decomposed to anything three to seven bubbles.

A few bubbles at any level make that level superfluous. For example, if a bubble is

decomposed to just one bubble or two bubbles, then this decomposition becomes trivial

and redundant. On the other hand, too many bubbles at any level of a DFD makes the

DFD model hard to understand. Decomposition of a bubble should be carried on until

a level is reached at which the function of the bubble can be described using a simple

algorithm. We can now describe how to go about developing the DFD model of a

system more systematically.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

1. Construction of context diagram: Examine the SRS document to determine:

 Different high-level functions that the system needs to perform.

 Data input to every high-level function.

 Data output from every high-level function.

 Interactions (data flow) among the identified high-level functions.

 Represent these aspects of the high-level functions in a diagrammatic form. This would

form the top-level data flow diagram (DFD), usually called the DFD 0.

2. Construction of level 1 diagram: Examine the high-level functions described in the SRS

document. If there are three to seven high-level requirements in the SRS document, then

represent each of the high-level function in the form of a bubble. If there are more than seven

bubbles, then some of them have to be combined. If there are less than three bubbles, then some

of these have to be split.

3. Construction of lower-level diagrams: Decompose each high-level function into its

constituent subfunctions through the following set of activities:

 Identify the different subfunctions of the high-level function.

 Identify the data input to each of these subfunctions.

 identify the data output from each of these subfunctions.

 Identify the interactions (data flow) among these subfunctions.

 Represent these aspects in a diagrammatic form using a DFD.

 Recursively repeat Step 3 for each subfunction until a subfunction can be represented

by using a simple algorithm.

Numbering of bubbles

It is necessary to number the different bubbles occurring in the DFD. These numbers helping

uniquely identifying any bubble in the DFD from its bubble number. The bubble at the context

level is usually assigned the number 0 to indicate that it is the 0 level DFD. Bubble sat level 1

are numbered, 0.1, 0.2, 0.3, etc. When a bubble numbered x is decomposed, its children bubble

is numbered x.1, x.2, x.3, etc. In this numbering scheme, by looking at the number of a bubble

we can unambiguously determine its level, its ancestors, and itssuccessors.

Balancing DFDs

 The DFD model of a system usually consists of many DFDs that are organized in a

hierarchy. In this context, a DFD is required to be balanced with respect to the

corresponding bubble of the parent DFD. We illustrate the concept of balancing a DFD

in Figure 6.5. In the level 1 DFD, data items d1 and d3 flow out of the bubble 0.1 and

the data item d2 flows into the bubble 0.1 (shown by the dotted circle). In the next level,

bubble 0.1 is decomposed into three DFDs (0.1.1, 0.1.2, 0.1.3). The decomposition is

balanced, as d1 and d3 flow out of the level 2 diagram and d2 flows in. Please note that

dangling arrows (d1, d2, d3) represent the data flows into or out of a diagram.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

How far to decompose?

 A bubble should not be decomposed any further once a bubble is found to represent a

simple set of instructions. For simple problems, decomposition up to level 1 should

suffice. However, large industry standard problems may need decomposition up to level

3 or level 4. Rarely, if ever, decomposition beyond level 4 is needed.

Commonly made errors while constructing a DFD model

 Although DFDs are simple to understand and draw, students and practitioners alike

encounter similar types of problems while modelling software problems using DFDs.

While learning from experience is a powerful thing, it is an expensive pedagogical

technique in the business world. It is therefore useful to understand the different types

of mistakes that beginners usually make while constructing the DFD model of systems,

so that you can consciously try to avoid them. The errors are as follows:

 Many beginners commit the mistake of drawing more than one bubble in the context

diagram. Context diagram should depict the system as a single bubble.

 Many beginners create DFD models in which external entities appearing at all levels of

DFDs. All external entities interacting with the system should be represented only in

the context diagram. The external entities should not appear in the DFDs at any other

level.

 It is a common oversight to have either too few or too many bubbles in a DFD. Only

three to seven bubbles per diagram should be allowed. This also means that each bubble

in a DFD should be decomposed three to seven bubbles in the next level.

 Many beginners leave the DFDs at the different levels of a DFD model unbalanced.

 A common mistake committed by many beginners while developing a DFD model is

attempting to represent control information in a DFD.

Shortcomings of the DFD model

 DFD models suffer from several shortcomings. The important shortcomings of DFD

models are the following:

 Imprecise DFDs leave ample scope to be imprecise. In the DFD model, we judge the

function performed by a bubble from its label. However, a short label may not capture

the entire functionality of a bubble. For example, a bubble named find book- position

has only intuitive meaning and does not specify several things, e.g. what happens when

some input information is missing or is incorrect. Further, the find-book-position

bubble may not convey anything regarding what happens when the required book is

missing.

 Not-well defined control aspects are not defined by a DFD. For instance, the order in

which inputs are consumed and outputs are produced by a bubble is not specified.

A DFD model does not specify the order in which the different bubbles are executed

Representation of such aspects is very important for modelling real-time systems.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

 Decomposition: The method of carrying out decomposition to arrive at the successive

levels and the ultimate level to which decomposition is carried out are highly subjective

and depend on the choice and judgment of the analyst. Due to this reason, even for the

same problem, several alternative DFD representations are possible. Further, many

times it is not possible to say which DFD representation is superior or preferable to

another one.

 Improper data flow diagram: The data flow diagramming technique does not provide

any specific guidance as to how exactly to decompose a given function into its

subfunctions and we have to use subjective judgment to carry out decomposition

STRUCTURED DESIGN

The aim of structured design is to transform the results of the structured analysis (that is, the

DFD model) into a structure chart. A structure chart represents the software architecture. The

various modules making up the system, the module dependency (i.e., which module calls

which other modules), and the parameters that are passed among the different modules. The

structure chart representation can be easily implemented using some programming language.

Since the main focus in a structure chart representation is on module structure of a software

and the interaction among the different modules, the procedural aspects (e.g., how a particular

functionality is achieved) are not represented.

The basic building blocks using which structure charts are designed are as following:

 Rectangular boxes: A rectangular box represents a module. Usually, every rectangular

box is annotated with the name of the module it represents.

 Module invocation arrows: An arrow connecting two modules implies that during

program execution control is passed from one module to the other in the direction of

the connecting arrow. However, just by looking at the structure chart, we cannot say

whether a module calls another module just once or many times. Also, just by looking

at the structure chart, we cannot tell the order in which the different modules are

invoked.

 Data flow arrows: These are small arrows appearing alongside the module invocation

arrows. The data flow arrows are annotated with the corresponding data name. Data

flow arrows represent the fact that the named data passes from one module to the other

in the direction of the arrow.

 Library modules: A library module is usually represented by a rectangle with double

edges. Libraries comprise the frequently called modules. Usually, when a module is

invoked by many other modules, it is made into a library module.

 Selection: The diamond symbol represents the fact that one module of several modules

connected with the diamond symbol is invoked depending on the outcome of the

condition attached with the diamond symbol.

 Repetition: A loop around the control flow arrows denotes that the respective modules

are invoked repeatedly.

 In any structure chart, there should be one and only one module at the top, called the

root. There should be at most one control relationship between any two modules in the

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

structure chart. This means that if module A invokes module B, module B cannot invoke

module A. The main reason behind this restriction is that we can consider the different

modules of a structure chart to be arranged in layers or levels. The principle of

abstraction does not allow lower-level modules to be aware of the existence of the high-

level modules However, it is possible for two higher-level modules to invoke the same

lower-level module. An example of a properly layered design and another of a poorly

layered design

Flow chart versus structure chart

 We are all familiar with the flow chart representation of a program. Flow chart is a

convenient technique to represent the flow of control in a program. A structure chart

differs from a flow chart in three principal ways:

 It is usually difficult to identify the different modules of a program from its flow chart

representation.

 Data interchange among different modules is not represented in a flow chart.

 Sequential ordering of tasks that is inherent to a flow chart is suppressed in a structure

chart.

Transformation of a DFD Model into Structure Chart

 Systematic techniques are available to transform the DFD representation of a problem

into a module structure represented by as a structure chart. Structured design provides

two strategies to guide transformation of a DFD into a structure chart:

 Transform analysis

 Transaction analysis

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

 At each level of transformation, it is important to first determine whether the transform

or the transaction analysis is applicable to a particular DFD.

Whether to apply transform or transaction processing?

 Given a specific DFD of a model, how does one decide whether to apply transform

analysis or transaction analysis? For this, one would have to examine the data input to

the diagram. The data input to the diagram can be easily spotted because they are

represented by dangling arrows. If all the data flow into the diagram are processed in

similar ways (i.e., if all the input data flow arrows are incident on the same bubble in

the DFD) then transform analysis is applicable.

 Otherwise, transaction analysis is applicable. Normally, transform analysis is applicable

only to very simple processing. Please recollect that the bubbles are decomposed until

it represents a very simple processing that can be implemented using only a few lines

of code. Therefore, transform analysis is normally applicable at the lower levels of a

DFD model. Each different way in which data is processed corresponds to a separate

transaction. Each transaction corresponds to a functionality that lets a user perform a

meaningful piece of work using the software.

Transform analysis

 Transform analysis identifies the primary functional components (modules) and the

input and output data for these components. The first step in transform analysis is to

divide the DFD into three types of parts:

 Input.

 Processing.

 Output.

The input portion in the DFD includes processes that transform input data from physical

(e.g., character from terminal) to logical form (e.g., internal tables, lists, etc.). Each input

portion is called an afferent branch.

The output portion of a DFD transforms output data from logical form to physical form. Each

output portion is called an efferent branch. The remaining portion of a DFD is called central

transform.

The output portion of a DFD transforms output data from logical form to physical form. Each

output portion is called an efferent branch. The remaining portion of a DFD is called central

transform.

 In the next step of transform analysis, the structure chart is derived by drawing one

functional component each for the central transform, the afferent and efferent branches.

These are drawn below a root module, which would invoke these modules. Identifying

the input and output parts requires experience and skill.

 One possible approach is to trace the input data until a bubble is found whose output

data cannot be deduced from its inputs alone. Processes which validate input are not

central transforms.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

 Processes which sort input or filter data from it are central transforms. The first level of

structure chart is produced by representing each input and output unit as a box and each

central transform as a single box.

 In the third step of transform analysis, the structure chart is refined by adding

subfunctions required by each of the high-level functional components. Many levels of

functional components may be added. This process of breaking functional components

into subcomponents is called factoring. Factoring includes adding read and write

modules, error handling modules, initialization and termination process, identifying

consumer modules etc. The factoring process is continued until all bubbles in the DFD

are represented in the structure chart.

Transaction analysis

 Transaction analysis is an alternative to transform analysis and is useful while designing

transaction processing programs. A transaction allows the user to perform some specific

type of work by using the software. For example, ‘issue book’, ‘return book’, ‘query

book’, etc., are transactions.

 As in transform analysis, first all data entering into the DFD need to be identified. In a

transaction-driven system, different data items may pass through different computation

paths through the DFD. This is in contrast to a transform centered system where each

data item entering the DFD goes through the same processing steps.

 Each different way in which input data is processed is a transaction. A simple way to

identify a transaction is the following. Check the input data. The number of bubbles on

which the input data to the DFD are incident defines the number of transactions.

However, some transactions may not require any input data. These transactions can be

identified based on the experience gained from solving a large number of examples.

 For each identified transaction, trace the input data to the output. All the traversed

bubbles belong to the transaction. These bubbles should be mapped to the same module

on the structure chart. In the structure chart, draw a root module and below this module

draw each identified transaction as a module. Every transaction carries a tag identifying

its type. Transaction analysis uses this tag to divide the system into transaction

modulesand a transaction-centre module.

DETAILED DESIGN

 During detailed design the pseudo code description of the processing and the different

data structures are designed for the different modules of the structure chart. These are

usually described in the form of module specifications (MSPEC). MSPEC is usually

written using structured English. The MSPEC for the non-leaf modules describe the

different conditions under which the responsibilities are delegated to the lower-level

modules.

 The MSPEC for the leaf-level modules should describe in algorithmic form how the

primitive processing steps are carried out. To develop the MSPEC of a module, it is

usually necessary to refer to the DFD model and the SRS document to determine the

functionality of the module.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

DESIGN REVIEW

 After a design is complete, the design is required to be reviewed. The review team

usually consists of members with design, implementation, testing, and maintenance

perspectives, who may or may not be the members of the development team. Normally,

members of the team who would code the design, and test the code, the analysts, and

the maintainers attend the review meeting. The review team checks the design

documents especially for the following aspects:

 Traceability: Whether each bubble of the DFD can be traced to some module in the

structure chart and vice versa. They check whether each functional requirement in the

SRS document can be traced to some bubble in the DFD model and vice versa.

 Correctness: Whether all the algorithms and data structures of the detailed design are

correct.

 Maintainability: Whether the design can be easily maintained in future.

 Implementation: Whether the design can be easily and efficiently be implemented.

After the points raised by the reviewers is addressed by the designers, the design

document becomes ready for implementation.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

UNIT-III

CHAPTER-III

USER INTERFACE DESIGN

The user interface portion of a software product is responsible for all interactions with the

user. Almost every software product has a user interface (can you think of a software product

that does not have any user interface?). In the early days of computer, no software product

had any user interface.

CHARACTERISTICS OF A GOOD USER INTERFACE

How to develop user interfaces, it is important to identify the different characteristics that are

usually desired of a good user interface. Unless we know what exactly is expected of a good

user interface, we cannot possibly design one.

 Speed of learning: A good user interface should be easy to learn. Speed of learning is

hampered by complex syntax and semantics of the command issue procedures. A good

user interface should not require its users to memories commands. Neither should the

user be asked to remember information from one screen to another while performing

various tasks using the interface. Besides, the following three issues are crucial to

enhance the speed of learning:

 Use of metaphors1 and intuitive command names: Speed of learning an interface is

greatly facilitated if these are based on some day-to-day real-life examples or some

physical objects with which the users are familiar with. The abstractions of real-life

objects or concepts used in user interface design are called metaphors. If the user

interface of a text editor uses concepts similar to the tools used by a writer for text

editing such as cutting lines and paragraphs and pasting it at other places, users can

immediately relate to it.

 Another popular metaphor is a shopping cart. Everyone knows how a shopping cart is

used to make choices while purchasing items in a supermarket. If a user interface uses

the shopping cart metaphor for designing the interaction style for a situation where

similar types of choices have to be made, then the users can easily understand and learn

to use the interface. Also, learning is facilitated by intuitive command names and

symbolic command issue procedures.

 Consistency: Once, a user learns about a command, he should be able to use the similar

commands in different circumstances for carrying out similar actions. This makes it

easier to learn the interface since the user can extend his knowledge about one part of

the interface to the other parts. Thus, the different commands supported by an interface

should be consistent.

 Component-based interface: Users can learn an interface faster if the interaction style

of the interface is very similar to the interface of other applications with which the user

is already familiar with. This can be achieved if the interfaces of different applications

are developed using some standard user interface components. This, in fact, is the theme

of the component-based user interface

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

 Speed of use: Speed of use of a user interface is determined by the time and user effort

necessary to initiate and execute different commands. This characteristic of the

interface is sometimes referred to as productivity support of the interface. It indicates

how fast the users can perform their intended tasks. The time and user effort necessary

to initiate and execute different commands should be minimal.

 Speed of recall: Once users learn how to use an interface, the speed with which they

can recall the command issue procedure should be maximized. This characteristic is

very important for intermittent users. Speed of recall is improved if the interface is

based on some metaphors, symbolic command issue procedures, and intuitive

command names.

 Error prevention: A good user interface should minimize the scope of committing

errors while initiating different commands. The error rate of an interface can be easily

determined by monitoring the errors committed by an average user while using the

interface. This monitoring can be automated by instrumenting the user interface code

with monitoring code which can record the frequency and types of user error and later

display the statistics of various kinds of errors committed by different users.

 Aesthetic and attractive: A good user interface should be attractive to use. An

attractive user interface catches user attention and fancy. In this respect, graphics-based

user interfaces have a definite advantage over text-based interfaces.

 Consistency: The commands supported by a user interface should be consistent. The

basic purpose of consistency is to allow users to generalize the knowledge about aspects

of the interface from one part to another. Thus, consistency facilitates speed of learning,

speed of recall, and also helps in reduction of error rate.

 Feedback: A good user interface must provide feedback to various user actions.

Especially, if any user request takes more than few seconds to process, the user should

be informed about the state of the processing of his request. In the absence of any

response from the computer for a long time, a novice user might even start

recovery/shutdown procedures in panic. If required, the user should be periodically

informed about the progress made in processing his command.

 Support for multiple skill levels: A good user interface should support multiple levels

of sophistication of command issue procedure for different categories of users. This is

necessary because users with different levels of experience in using an application

prefer different types of user interfaces. Experienced users are more concerned about

the efficiency of the command issue procedure, whereas novice users pay importance

to usability aspects. Very cryptic and complex commands discourage a novice, whereas

elaborate command sequences make the command issue procedure very slow and

therefore put off experienced users

 Error recovery (undo facility): While issuing commands, even the expert users can

commit errors. Therefore, a good user interface should allow a user to undo a mistake

committed by him while using the interface. Users are inconvenienced if they cannot

recover from the errors they commit while using a software. If the users cannot recover

even from very simple types of errors, they feel irritated, helpless, and out of control.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

 User guidance and on-line help: Users seek guidance and on-line help when they

either forget a command or are unaware of some features of the software. Whenever

users need guidance or seek help from the system, they should be provided with

appropriate guidance and help.

BASIC CONCEPTS

Some basic concepts in user guidance and on-line help system. Next, we examine the

concept of a mode-based and a modeless interface and the advantages of a graphical

interface.

User Guidance and On-line Help

 Users may seek help about the operation of the software any time while using the

software. This is provided by the on-line help system. This is different from the

guidance and error messages which are flashed automatically without the user asking

for them. The guidance messages prompt the user regarding the options he has

regarding the next command, and the status of the last command, etc.

 On-line help system: Users expect the on-line help messages to be tailored to the

context in which they invoke the “help system”. Therefore, a good on-line help system

should keep track of what a user is doing while invoking the help system and provide

the output message in a context-dependent way. Also, the help messages should be

tailored to the user’s experience level.

 Guidance messages: The guidance messages should be carefully designed to prompt

the user about the next actions he might pursue, the current status of the system, the

progress so far made in processing his last command, etc. A good guidance system

should have different levels of sophistication for different categories of users. For

example, a user using a command language interface might need a different type of

guidance compared to a user using a menu or iconic interface (These different types of

interfaces are discussed later in this chapter). Also, users should have an option to turn

off the detailed messages.

 Error messages: Error messages are generated by a system either when the user

commits some error or when some errors encountered by the system during processing

due to some exceptional conditions, such as out of memory, communication link

broken, etc. Users do not like error messages that are either ambiguous or too general

such as “invalid input or system error”.

 Error messages should be polite. Error messages should not have associated noise

which might embarrass the user. The message should suggest how a given error can be

rectified. If appropriate, the user should be given the option of invoking the on-line help

system to find out more about the error situation.

Mode-based versus Modeless Interface

 A mode is a state or collection of states in which only a subset of all user interaction

tasks can be performed. In a modeless interface, the same set of commands can be

invoked at any time during the running of the software. Thus, a modeless interface has

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

only a single mode and all the commands are available all the time during the operation

of the software.

 On the other hand, in a mode-based interface, different sets of commands can be

invoked depending on the mode in which the system is, i.e., the mode at any instant is

determined by the sequence of commands already issued by the user.

 A mode-based interface can be represented using a state transition diagram, where each

node of the state transition diagram would represent a mode. Each state of the state

transition diagram can be annotated with the commands that are meaningful in that

state.

Graphical User Interface (GUI) versus Text-based User Interface

Let us compare various characteristics of a GUI with those of a text-based user interface:

 In a GUI multiple windows with different information can simultaneously be displayed

on the user screen. This is perhaps one of the biggest advantages of GUI over text-

based interfaces since the user has the flexibility to simultaneously interact with several

related items at any time and can have access to different system information displayed

in different windows.

 Iconic information representation and symbolic information manipulation is possible in

a GUI. Symbolic information manipulation such as dragging an icon representing a file

to a trash for deleting is intuitively very appealing and the user can instantly remember

it.

 A GUI usually supports command selection using an attractive and user-friendly menu

selection system.

 In a GUI, a pointing device such as a mouse or a light pen can be used for issuing

commands. The use of a pointing device increases the efficacy of command issue

procedure.

 On the flip side, a GUI requires special terminals with graphics capabilities for running

and also requires special input devices such a mouse. On the other hand, a text-based

user interface can be implemented even on a cheap alphanumeric display terminal.

Graphics terminals are usually much more expensive than alphanumeric terminals.

TYPES OF USER INTERFACES

Broadly speaking, user interfaces can be classified into the following three categories:

1. Command language-based interfaces

2. Menu-based interfaces

3. Direct manipulation interfaces

Each of these categories of interfaces has its own characteristic advantages and disadvantages.

Therefore, most modern applications use a careful combination of all these three types of user

interfaces for implementing the user command repertoire. It is very difficult to come up with a

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

simple set of guidelines as to which parts of the interface should be implemented using what

type of interface.

This choice is to a large extent dependent on the experience and discretion of the designer of

the interface. However, a study of the basic characteristics and the relative advantages of

different types of interfaces would give a fair idea to the designer regarding which commands

should be supported using what type of interface.

Command Language-based Interface

 A command language-based interface—as the name itself suggests, is based on

designing a command language which the user can use to issue the commands. The user

is expected to frame the appropriate commands in the language and type them

appropriately whenever required. A simple command language-based interface might

simply assign unique names to the different commands. However, a more sophisticated

command language-based interface may allow users to compose complex commands

by using a set of primitive commands. Such a facility to compose commands

dramatically reduces the number of command names one would have to remember.

 Command language-based interfaces allow fast interaction with the computer and

simplify the input of complex commands. Among the three categories of interfaces, the

command language interface allows for most efficient command issue procedure

requiring minimal typing. Further, a command language-based interface can be

implemented even on cheap alphanumeric terminals. Also,

 A command language-based interface is easier to develop compared to a menu-based

or a direct-manipulation interface because compiler writing techniques are well

developed. One can systematically develop a command language interface by using the

standard compiler writing tools Lex and Yacc.

 However, command language-based interfaces suffer from several drawbacks. Usually,

command language-based interfaces are difficult to learn and require the user to

memorize the set of primitive commands. Also, most users make errors while

formulating commands in the command language and also while typing them

Issues in designing a command language-based interface

 Two overbearing command design issues are to reduce the number of primitive

commands that a user has to remember and to minimize the total typing required. We

elaborate these considerations in the following:

 The designer has to decide what mnemonics (command names) to use for the different

commands. The designer should try to develop meaningful mnemonics and yet be

concise to minimize the amount of typing required. For example, the shortest mnemonic

should be assigned to the most frequently used commands.

 The designer has to decide whether the users will be allowed to redefine the command

names to suit their own preferences. Letting a user define his own mnemonics for

various commands is a useful feature, but it increases the complexity of user interface

development.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

 The designer has to decide whether it should be possible to compose primitive

commands to form more complex commands. A sophisticated command composition

facility would require the syntax and semantics of the various command composition

 options to be clearly and unambiguously specified. The ability to combine commands

is a powerful facility in the hands of experienced users, but quite unnecessary for

inexperienced users.

Menu-based Interface

 An important advantage of a menu-based interface over a command language-based

interface is that a menu-based interface does not require the users to remember the exact

syntax of the commands. A menu-based interface is based on recognition of the

command names, rather than recollection. Humans are much better in recognizing

something than recollecting it.

 Further, in a menu-based interface the typing effort is minimal as most interactions are

carried out through menu selections using a pointing device. This factor is an important

consideration for the occasional user who cannot type fast.

 In fact, a major challenge in the design of a menu-based interface is to structure large

number of menu choices into manageable forms. In the following, we discuss some of

the techniques available to structure a large number of menu items:

 Scrolling menu: Sometimes the full choice list is large and cannot be displayed within

the menu area, scrolling of the menu items is required. This would enable the user to

view and select the menu items that cannot be accommodated on the screen. However,

in a scrolling menu all the commands should be highly correlated, so that the user can

easily locate a command that he needs.

 This is important since the user cannot see all the commands at any one time. An

example situation where a scrolling menu is frequently used is font size selection in a

document processor (see Figure 9.1). Here, the user knows that the command list

contains only the font sizes that are arranged in some order and he can scroll up or down

to find the size he is looking for.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

 Walking menu: Walking menu is very commonly used to structure a large collection

of menu items. In this technique, when a menu item is selected, it causes further menu

items to be displayed adjacent to it in a sub-menu.

 A walking menu can successfully be used to structure commands only if there are tens

rather than hundreds of choices since each adjacently displayed menu does take up

screen space and the total screen area is after all limited.

 Hierarchical menu: This type of menu is suitable for small screens with limited

display area such as that in mobile phones. In a hierarchical menu, the menu items are

organized in a hierarchy or tree structure. Selecting a menu item causes the current

menu display to be replaced by an appropriate sub-menu. Thus, in this case, one can

consider the menu and its various sub-menu to form a hierarchical tree-like structure.

Direct Manipulation Interfaces

Direct manipulation interfaces present the interface to the user in the form of visual models

(i.e., icons2 or objects). For this reason, direct manipulation interfaces are sometimes called as

iconic interfaces. In this type of interface, the user issues commands by performing actions

 on the visual representations of the objects, e.g., pull an icon representing a file into an

icon representing a trash box, for deleting the file. Important advantages of iconic

interfaces include the fact that the icons can be recognized by the users very easily, and

that icons are language-independent. However, experienced users find direct

manipulation interfaces very far too.

 Also, it is difficult to give complex commands using a direct manipulation interface.

For example, if one has to drag an icon representing the file to a trash box icon for

deleting a file, then in order to delete all the files in the directory one has to perform

this operation individually for all files—which could be very easily done by issuing a

command like delete *.*.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

Performing User interface design: Golden rules.

1. Place the user in control.

2. Reduce the user’s memory load.

3. Make the interface consistent.

 These golden rules actually form the basis for a set of user interface design principles that

guide this important aspect of software design

Place the User in Control

During a requirements-gathering session for a major new information system, a key user was

asked about the attributes of the window-oriented graphical interface

Define interaction modes in a way that does not force a user into unnecessary or undesired

actions. An interaction mode is the current state of the interface. For example, if spell check is

selected in a word-processor menu, the software moves to a spell-checking mode.

Provide for flexible interaction. Because different users have different interaction

preferences, choices should be provided.

 For example, software might allow a user to interact via keyboard commands, mouse

movement, a digitizer pen, a multi touch screen, or voice recognition commands.

 But every action is not amenable to every interaction mechanism

Allow user interaction to be interruptible and undoable

 Even when involved in a sequence of actions, the user should be able to interrupt the

sequence to do something else (without losing the work that had been done). The user

should also be able to “undo” any action.

Streamline interaction as skill levels advance and allow the interaction to be customized.

Users often find that they perform the same sequence of interactions repeatedly. It is

worthwhile to design a “macro” mechanism that enables an advanced user to customize the

interface to facilitate interaction.

Hide technical internals from the casual user. The user interface should move the user into

the virtual world of the application. The user should not be aware of the operating system, file

management functions, or other arcane computing technology.

Design for direct interaction with objects that appear on the screen. The user feels a sense

of control when able to manipulate the objects that are necessary to perform a task in a manner

similar to what would occur if the object were a physical thing. For example, an application

interface that allows a user to “stretch” an object (scale it in size) is an implementation of direct

manipulation.

Reduce the User’s Memory Load

The more a user has to remember, the more error-prone the interaction with the system will be.

It is for this reason that a well-designed user interface does not tax the user’s memory.

 It defines design principles that enable an interface to reduce the user’s memory load:

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

Reduce demand on short-term memory.

 When users are involved in complex tasks, the demand on short-term memory can be

significant. The interface should be designed to reduce the requirement to remember past

actions, inputs, and results

Establish meaningful defaults.

 The initial set of defaults should make sense for the average user, but a user should be able

to specify individual preferences.

Define shortcuts that are intuitive.

 When mnemonics are used to accomplish a system function (e.g., alt-P to invoke the print

function), the mnemonic should be tied to the action in a way that is easy to remember (e.g.,

first letter of the task to be invoked).

The visual layout of the interface should be based on a real-world metaphor.

 For example, a bill payment system should use a checkbook and check register metaphor to

guide the user through the bill paying process. This enables the user to rely on well-understood

visual cues, rather than memorizing an arcane interaction sequence.

Disclose information in a progressive fashion.

 The interface should be organized hierarchically. That is, information about a task, an object,

or some behavior should be presented first at a high level of abstraction. More detail should be

presented after the user indicates interest with a mouse pick

Make the Interface Consistent

The interface should present and acquire information in a consistent fashion. This implies that

(1) all visual information is organized according to design rules that are maintained

throughout all screen displays,

(2) input mechanisms are constrained to a limited set that is used consistently

throughout the application, and

(3) mechanisms for navigating from task to task are consistently defined and

implemented.

Allow the user to put the current task into a meaningful context.

 Many interfaces implement complex layers of interactions with dozens of screen

images. It is important to provide indicators (e.g., window titles, graphical icons,

consistent color coding) that enable the user to know the context of the work at hand.

Maintain consistency across a family of applications.

 A set of applications (or products) should all implement the same design rules so

that consistency is maintained for all interaction

If past interactive models have created user expectations, do not make changes unless

there is a compelling reason to do so.

DEPARTMENT OF CSE SOFTWARE ENGINEERING

 PREPARED BY A. DIVYA

 Once a particular interactive sequence has become a de facto standard (e.g., the use of

alt-S to save a file), the user expects this in every application he encounters. A change

(e.g., using alt-S to invoke scaling) will cause confusion.

