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Synchronization 

A cooperating process is one that can affect or be affected by other processes executing in 
the system. Cooperating process can either directly share a logical address space or be allowed 
to shared data only through files or messages. 

Concurrent access to shared data may result in data inconsistency. Maintaining data 
consistency requires mechanisms to ensure the orderly execution of cooperating processes. 
Race Condition 
 Processes P0 and P1 are creating child processes using the fork() system call. Here, we 

allowed both the processes to manipulate the variable next_available_pid concurrently. 

 A situation like this, where several processes access and manipulate the same data 
concurrently and the outcome of the execution depends on the particular order in which 
the access takes place, is called a race condition. 

 Race condition on kernel variable next_available_pid which represents the next available 
process identifier (pid). 

 To guard against the race condition above, we ensure that only one process at a time can 

be manipulating the variable next_available_pid. 

 

 Unless there is a mechanism to prevent P0 and P1 from accessing the variable 
next_available_pid  the same pid could be assigned to two different processes! 

 To make such a guarantee, we require that the processes be synchronized in some way. 

1. The Critical Section Problem 
 Consider a system consisting of n processes {p0, p1, … pn-1} 

 Each process has a segment of code, called a critical section 
 Process may be changing common variables, updating table, writing file, etc. 
 When one process in critical section, no other may be in its critical section 

 Critical section problem is to design protocol to solve this 

 Each process must ask permission to enter critical section in entry section, may follow 
critical section with exit section, then remainder section 

 General Structure of process Pi 

 
Requirements for solution to critical-section problem 
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 Mutual Exclusion - If process Pi is executing in its critical section, then no other 
processes can be executing in their critical sections 

 Progress - If no process is executing in its critical section and there exist some processes 
that wish to enter their critical section, then the selection of the process that will enter the 
critical section next cannot be postponed indefinitely 

 Bounded Waiting - A bound must exist on the number of times that other processes are 
allowed to enter their critical sections after a process has made a request to enter its critical 
section and before that request is granted  
 Assume that each process executes at a nonzero speed  
 No assumption concerning relative speed of the n processes 

 Two general approaches are used to handle critical sections in operating systems: 
preemptive kernels and non-preemptive kernels.  

 A preemptive kernel allows a process to be preempted while it is running in kernel mode. 
A non-preemptive kernel does not allow a process running in kernel mode to be preempted; 
a kernel-mode process will run until it exists kernel mode. 

2. Peterson’s Solution 

 Peterson solution is one of the solutions to critical section problem involving two 
processes. This solution states that when one process is executing its critical section then 
the other process executes the rest of the code and vice versa. 

 Peterson solution requires two shared data items: 
1) turn: indicates whose turn it is to enter into the critical section. If turn == i , then process 
i is allowed into their critical section. 
2) flag: indicates when a process wants to enter into critical section. When process i wants 
to enter their critical section, it sets flag[i] to true. 

 
Correctness of Peterson’s Solution 
Provable that the three critical-section problem requirements are met. 

 Mutual Exclusion is preserved:  
Pi enters CS only if: 

                      either flag[j] = false or turn = i 

 Progress requirement is satisfied:  
A process Pi can be prevented from entering the critical section only if it is stuck in the 

while loop with the condition flag[j] = true or turn = j 

 Bounded waiting: There exists a bound, or limit, on the number of times that other 
processes are allowed to enter their critical sections after a process has made a request to 
enter its critical section and before that request is granted. 
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3. Mutex Locks 
 Operating System designers build software tools to solve critical section problem.  

 Simplest is mutex lock. Boolean variable indicating if lock is available or not 

 Protect a critical section  by  
 First acquire() a lock  
 Then release() the lock 

 Calls to acquire() and release() must be atomic 
 Usually implemented via hardware atomic instructions such as compare-and-swap. 

 Disadvantage: It requires busy waiting. While a process is in critical section, any other 
process that tries to enter its critical section must loop continuously in the call to acquire(). 

 This lock therefore called a spinlock because the process “spins” while waiting for the 
lock to become available. 

Solution to Critical Section Problem using Mutex Locks 
  while(true) 

{    
  acquire lock 
   critical section  
  release lock 
   remainder section 
} 
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4. Semaphores 

 A semaphore S is an integer variable can be accessed only through two standard atomic 
operations: wait() and signal(). 

 The definition of wait() is as follows:     wait(S) { 
          while (S<=0); 

S--; 
  The definition of signal() is as follows:  signa(S) { 

        S++; 
} 

 When one process modifies the semaphore value, no other process can simultaneously 
modify that same semaphore value. 

4.1 Usage 

 The value of a counting semaphore can range over an unrestricted domain. The value of 
a binary semaphore can range only between 0 and 1. Same as Mutex Locks. 

 Each process that wishes to use a resource performs a wait() operation on the semaphore. 
When a process releases a resource, it performs a signal() operation. When the count for 
the semaphore goes to 0, all resources are being used. After that, process that wish to use 
a resource will block until the count becomes greater than 0. 

 We can also use semaphore to solve various synchronization problems. 

 Consider two concurrently running processes: P1 with a statement S1 and P2 with a 
statement S2. Suppose we require that S2 be executed only after S1 has completed. 

 We can implement this scheme readily by letting P1 and P2 share a common semaphore 
synch, initialized to 0.  

 In process P1, we insert the statements 
   S1; 
   signal(synch); 

 In process P2, we insert the statements 
   wait(synch); 
   S2; 

 Because synch is initialized to 0, P2 will execute S2 only after P1 has invoked 
signal(synch), which is after statement S1 has been executed. 

4.2 Implementation 
 To overcome the need for busy waiting, we can modify the definition of the wait() and 

signal() operations as follows: When a process execute the wait() operation and finds that 
the semaphore value is not positive, it must wait. 

 However, rather than engaging is busy waiting, the process can block itself. The block 
operation places a process into a waiting queue associated with the semaphore and the state 
of the process is switched to the waiting state.  

 Then control is transferred to the CPU scheduler, which selects another process to execute. 

 A process that is blocked, waiting on a semaphore S, should be restarted when some other 
process executes a signal() operation. The process is restarted by a wakeup() operation, 
which changes the process from the waiting state to the ready state. The process is then 
placed in the ready queue. 

 To implement semaphores under this definition, we define a semaphore as follows: 
typedef struct { 
 int value; 
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 struct process *list; 
} semaphore ; 

 Each semaphore has an integer value and a list of processes list. When a process must wait 
on a semaphore, it is added to the list of processes. A signal() operation removes one 
process from the list of waiting processes and awakens that process. 

 Now the wait() semaphore operation can be defined as 
wait(semaphore *S) {  
   Svalue--;  
   if(Svalue<0){ 
        add this process to Slist;  
      block();  
     }   
} 

      and the signal() semaphore operation can be defined as 
signal(semaphore *S) {  
   Svalue++;  
   if(Svalue<=0){ 
      remove a process P from S->list;  
      wakeup(P);  
   }  
} 

 The block() operation suspends the process that invokes it. The wakeup(P) operation 
resumes the execution of a blocked process P.  

4.3 Deadlocks and Starvation 
 The implementation of a semaphore with a waiting queue may result in a situation where 

two or more processes are waiting indefinitely for an event that can be caused only by one 
of the waiting processes. 

 The event is question is the execution of a signal() operation. When such a state is reached, 
these processes are said to be deadlocked. 

 To illustrate this, consider a system consisting of two processes, P0 and P1, each accessing 
two semaphores, S and Q, set to the value 1: 

P0    P1 

wait(S); wait(Q); 
wait(Q); wait(S); 
.  . 
.  . 
signal(S); signal(Q); 
signal(Q); signal(S); 

 Suppose that P0 executes wait(S) and then P1 executes wait(Q). When P0 executes wait(Q), 
it must wait until P1  executes signal(Q).   

 Similarly, when P1 executes wait(S), it must wait until P0 executes signal(S). Since these 
signal() operations cannot be executed, Po and PI are deadlocked. 

 We say that a set of processes is in a deadlock state when every process in the set is waiting 
for an event that can be caused only by another process in the set.  

 Another problem related to deadlocks is indefinite blocking, or starvation/a situation in 
which processes wait indefinitely within the semaphore. Indefinite blocking may occur if 
we add and remove processes from the list associated with a semaphore in LIFO order.  
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5. Classic problems of Synchronization 

5.1. The Bonded-Buffer Problem 
 Producer puts information into the buffer, consumer takes it out. The problem arise when 

the producer wants to put a new item in the buffer, but it is already full. The solution is for 
the producer has to wait until the consumer has consumed atleast one buffer. 

 Similarly, if the consumer wants to remove an item from the buffer and sees that the buffer 
is empty, it goes to sleep until the producer puts something in the buffer and wakes it up. 

 Synchronization problems: 
1. We must guard against attempting to write data to the buffer when the buffer is full, 

i.e., the producer must wait for an ‘empty space’. 
2. We must prevent the consumer from attempting to read data when the buffer is 

empty; i.e., the consumer must wait for ‘data available’.   
 To provide for each of these conditions, we require to employ three semaphores. The 

producer and consumer processes share the following data structure: 
int n; 
semaphore mutex=1; 
semaphore empty=n; 
semaphore full=0; 

 We assume that the pool consists of n buffers, each capable of holding one item. The 
mutex semaphore provides mutual exclusion for accesses to the buffer pool and is 
initialized to the value 1.  

 The empty and full semaphores count the number of empty and full buffers. The 
semaphore empty is initialized to n; the semaphore full is initialized to 0. 

 The code for the producer process is shown below: 

do { 
//produce an item in next_produced 

wait(empty) ;  
wait(mutex) ; 

// add next_produced to buffer 
signal(mutex) ; 
signal(full) ; 

}while (TRUE); 
 The code for the consumer process is shown below: 

do { 
wait(full) ; 
wait (mutex) ; 
// remove an item from buffer to next_consumed 
signal(mutex) ; 
signal(empty) ; 
// consume the item in next_consumed 

}while(TRUE); 
 We can interpret this code as the producer producing full buffers for the consumer or as 

the consumer producing empty buffers for the producer. 
5.2 The Readers-Writers Problem 
 A database is to be shared among several concurrent processes. Some processes (readers) 

may want only to read the database, some (writers) may want to update the database.  

 If two readers access the shared data simultaneously, no problem arises. However, if a 
writer and some other (either a reader or a writer) access the database simultaneously 
problem arises. 

 To ensure that these difficulties do not arise, we require that the writers have exclusive 
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access to the shared database. This synchronization problem is referred to as the readers-
writers problem.  

 The readers-writers problem has several variations, all involving priorities.  
1. No reader will be kept waiting unless a writer has already obtained permission to use 

the shared object.  
2. Once a writer is ready, that writer performs its write as soon as possible. In other 

words, if a writer is waiting to access the object, no new readers may start reading. 

 A solution to either problem may result in starvation. In the first case, writers may starve; 
in the second case, readers may starve.  

 In the solution to the first readers-writers problem, the reader processes share the following 
data structures: 

semaphore rw_mutex=1; 
semaphore mutex=1; 
int read_count=0; 

 The semaphores mutex and rw_mutex are initialized to 1; read_count is initialized to 0. 

 The mutex semaphore is used to ensure mutual exclusion when the variable read_count 
is updated. The read_count variable keeps track of how many processes are currently 
reading the object. The semaphore rw_mutex functions as a mutual-exclusion semaphore 
for the writers.  

 The code for a writer process is shown below: 
 do { 

wait(rw_mutex) ; 
// writing is performed 
signal(rw_mutex) ; 
}while(TRUE); 

 The code for a reader process is shown below: 
do { 

wait(mutex); 
read_count++; 
if (read_count ==1) 

wait(rw_mutex); 
signal(mutex); 

//reading is performed 
wait(mutex); 
read_count--; 
if(read_count==0) 

signal(w_mutex); 
signal(mutex); 
}while(TRUE);  

 If a writer is in the critical section and n readers are waiting, then one reader is queued on 
rw_mutex and n-1 readers are queued on mutex. 

5.3 The Dining-Philosophers Problem 
 Five philosophers are seated on 5 chairs across a table. Each philosopher has a plate full 

of noodles. Each philosopher needs a pair of forks to eat it. There are only 5 forks available 
all together. There is only one fork between any two plates of noodles. 

 In order to eat, a philosopher lifts two forks, one to his left and the other to his right. If he 
is successful in obtaining two forks, he starts eating, after some time he stops eating and 
keeps both the forks down. 



Unit –III                                           Dept of CSE, PVPSIT                         Operating Systems 

9 
 

 What if all the 5 philosophers decide to eat at the same time? 
 All the 5 philosophers would attempt to pick up two forks at the same time. So, none 

of them succeed. 

 One simple solution is to represent each fork with a semaphore. A philosopher tries to grab 
a fork by executing a wait() operation on that semaphore; he releases her forks by 
executing the signal() operation. Thus, the shared data are semaphore fork[5]; where all 
the elements of fork are initialized to 1.  

 The structure of philosopher i is shown below. 
do{ 

wait(fork[i] ); 
wait(fork [(i+1)%5]); 
//eat 
signal(fork [i] ); 
signal(fork [(i+l)%5]); 
//think 

    }while (TRUE); 
 Although this solution guarantees that no two neighbors are eating simultaneously, it 

nevertheless must be rejected because it could create a deadlock.  

 Suppose all 5 philosophers become hungry simultaneously and each grabs his left fork, he 
will be delayed forever.  

 Several possible remedies to the deadlock problem are listed.  
1) Allow at most 4 philosophers to be sitting simultaneously at the table.  
2) Allow a philosopher to pick up his fork only if both forks are available  
3) An odd philosopher picks up first his left fork and then her right fork, whereas an even 

philosopher picks up his right fork and then his left fork. 

6. Monitors 
 Semaphore is unstructured construct. Wait and signal operations can be scattered in a 

program and hence debugging becomes difficult. 

 Using semaphores incorrectly can result in timing errors that are difficult to detect, since 
these errors happen only if particular execution sequences take place and these sequences 
do not always occur. 

6.1 Usage 
 A monitor is an object that contains both the data and procedures needed to perform 

allocation of a shared resource. To accomplish resource allocation using monitors, a 
process must call a monitor entry routine.  

 Many processes may want to enter the monitor at the same time, but only one process at 
a time is allowed to enter.  

 Monitor data is accessible only within the monitor. There is no way for processes outside 
the monitor to access monitor data. This is a form of information hiding. 

 If a process calls a monitor entry routine while no other processes are executing inside 
the monitor, the process acquires a lock on the monitor and enters it. While a process is 
in the monitor, other processes may not enter the monitor to acquire the resource. 

 If a process calls a monitor entry routine while the other monitor is locked, the monitor 
makes the calling process wait outside the monitor until the lock on the monitor is 
released.  
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 The process that has the resource will call a monitor entry routine to release the resource. 
This routine could free the resource and wait for another requesting process to arrive. 
Monitor entry routine calls signal to allow one of the waiting processes to enter the 
monitor and acquire the resource.  

 Monitor gives high priority to waiting processes than to newly arriving ones. 

 
 The syntax of monitor is as follows: 

Monitor monitor_name 
{ 
/*Shared variable declarations*/ 

Procedure body P1 (………) { 
. . . . . . . . 
} 
Procedure body P2 (………) { 
. . . . . . . . 
} 
. 
. 
Procedure body Pn (………) { 
. . . . . . . . 
} 
{ 
Initialization Code 
} 

} 
 A programmer who needs to write a tailor-made synchronization scheme can define one 

or more variable of type condition: 
condition x , y; 

 The only operations that can be invoked on a condition variable are wait() and signal().  

 The operation 
x.wait(); 

means that the process invoking this operation is suspended until another process invokes 
  x.signal(); 

 The x.signal() operation resumes exactly one suspended process. If no process is 
suspended, then the signal() operation has no effect, i.e., the state of x is the same as if the 
operation had never been executed. 
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 Suppose that when the x.signal() operation is invoked by a process P, there exists a 

suspended process Q associated with the condition x. Clearly, if the suspended process Q 
is allowed to resume its execution, the signaling process P must wait. 

 Otherwise, both P and Q would be active simultaneously within the monitor. 

 Every condition variable has an associated queue. A process calling wait on a particular 
condition variable is placed into the queue associated with the condition variable. A 
process calling signal on a particular condition variable causes a process waiting on that 
condition variable to be removed from the queue associated with it.  

 Two possibilities exist: 
1) Signal and wait: P either waits until Q leaves the monitor or waits for another 

condition. 
2) Signal and continue: Q either waits until P leaves the monitor or waits for another 

condition. 
6.2 Dining-Philosophers Solution using Monitors 
 This solution imposes the restriction that a philosopher may pick up his forks only if both 

of them are available. 

 To code this solution, we need to distinguish among three states in which we may find a 
philosopher. For this purpose, we introduce the following data structure: 

enum {THINKING, HUNGRY, EATING } state[5]; 
 Philosopher i can set the variable state[i] = Eating only if his two neighbors are not eating: 

(state[(i+4)%5]!=EATING) and (state[(i+1)%5]!=EATING). 

 We also need to declare  
condition self[5]; 

This allows philosophers i to delay himself when he is hungry but is unable to obtain the      
forks he needs 

 A monitor solution to the dining-philosopher problem is as follows: 
monitor DiningPhilosophers 
{ 
 enum {THINKING, HUNGRY, EATING} state[5]; 
 condition self[5]; 
 void pickup(int i) { 
  state[i] = HUNGRY; 
  test(i); 
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  if (state[i]!=EATING) 
   self[i].wait(); 
  } 
 void putdown(int i) { 
  state[i]=THINKING; 
  test((i+4)%5); 
  test((i+1)%5); 
  } 
 void test(int i) { 
  if (state[i+4]%5]!=EATING) && 
     (state[i]==HUNGRY) && 
     (state[(i+1)%5]!=EATING)) { 
   state[i]=EATING; 
   self[i].signal(); 
   } 
  } 
 initialization_code() { 
  for(int i=0; i<5; i++) 
   state[i]=THINKING; 
 } 
} 

 The distribution of the forks is controlled by the monitor DiningPhilosophers.  
Each philosopher, before starting to eat, must invoke the operation pickup(). This act may 
result in the suspension of the philosopher process.  

 After the successful completion of the operation, the philosopher may eat. Following this, 
the philosopher invokes the putdown() operation.  

6.3 Implementing a Monitor Using Semaphores 
 For each monitor, a semaphore mutex(initialized to 1) is provided. A process must execute 

wait(mutex) before entering the monitor and must execute signal(mutex) after leaving 
the monitor. 

 Since a signaling process must wait until the resumed process either leaves or waits, an 
additional semaphore, next, is introduced, initialized to 0. 

 The signaling processes can use next to suspend themselves. An integer variable 
next_count is also provided to count the number of processes suspended on next. Thus, 
each external function F is replaced by 

wait(mutex); 
…………… 
body of F 
…………… 
if (next_count > 0) 
 signal(next); 
else 
 signal(mutex); 

      Mutual exclusion within a monitor is ensured 
 For each condition x, we introduce a semaphore x_sem and an integer variable x_count, 

both initialized to 0. The operation x.wait() can now be implemented as 
x_count++; 
if(next_count>0) 
 signal(next); 
else 
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 signal(mutex); 
wait(x_sem); 
x_count--; 

 The operation x.signal() can be implemented as  
if(x_count>0) { 
 next_count++; 
 signal(x_sem); 
 wait(next); 
 next_count--; 
} 

6.4 Resuming Processes Within a Monitor 
 If several processes are suspended on condition variable x and x.signal() is executed, then 

how to determine which of the suspended processes should be resumed next ? 

 One simplest solution is to use a First-Come, First-served (FCFS) ordering, so that the 
process that has been waiting the longest time is resumed first. Such a scheme is not 
adequate. 

 Use the conditional-wait construct of the form 
x.wait(c) 

      where c is an integer ( called the priority number) 
      The process with lowest number(highest priority) is resumed next. 

 To illustrate this new mechanism, consider the ResouceAllocator monitor shown below 
Where R is an instance type of type ResourceAllocator 

  
Single Resource Allocation 

 Allocate a single resource among competing processes using priority numbers that specifies  
the maximum time a process  plans to use the resource 

 The process with the shortest time is allocated the resource first 

 Let R is an instance of  type ResourceAllocator 
              R.acquire(t); 
                  ... 
                access the resurce; 
                   ... 
              R.release();  



Unit –III                                           Dept of CSE, PVPSIT                         Operating Systems 

14 
 

Dead Locks 

1. System Model 
 A system consists of a finite number of resources to be distributed among a number of 

competing threads.  

 A thread must request a resource before using it and must release the resource after using 
it. A thread may request as many resources as it requires to carry out its designated task. 

 Under the normal mode of operation, a thread may utilize a resource in only the following 
sequence: 

1. Request. The thread requests the resource. If the request cannot be granted    
immediately, then the requesting thread must wait until it can acquire the resource. 

2. Use. The thread can operate on the resource.  
3. Release. The thread releases the resource. 

 A set of threads is in a deadlocked state when every thread in the set is waiting for an event 
that can be caused only by another thread in the set. The events with which we are mainly 
concerned here are resource acquisition and release.  

2. Deadlock characterization: In a deadlock, processes never finish executing, and 
system resources are tied up, preventing other jobs from starting.

2.1. Necessary Conditions: A deadlock situation can arise if the following four conditions 
hold simultaneously in a system: 
Mutual Exclusion: At least one resource must be held in a non-sharable mode; that is, 
only one process at a time can use the resource.  
Hold and wait: A process must be holding at least one resource and waiting to acquire 
additional resources that are currently being held by other processes. 
No preemption: Resources cannot be preempted; that is , a resource can be released only 
voluntarily by the process holding it, after that process has completed its task. 
Circular wait: A set {P0 ,P1 ,… Pn} of waiting processes must exist such that P0 is waiting 
for a resource held by P1 , P1 is waiting for a resource held by P2 …. Pn-1 is waiting for a 
resource held by Pn. 

2.2. Resource-Allocation Graph 
 Deadlocks can be described in terms of a directed graph called a system resource-

allocation graph. This graph consists of a set of vertices V and a set of edges E.  

 The set of vertices V is partitioned into two different types of nodes: T = {T1, T2, ..., Tn }, 
the set consisting of all the active threads in the system, and R = {R1, R2, ..., Rm }, the set 
consisting of all resource types in the system. 

 A directed edge Ti → Rj is called a request edge; it signifies that thread Ti has requested 
an instance of resource type Rj and is currently waiting for that resource. 

 A directed edge Rj → Ti is called an assignment edge;  it signifies that an instance of 
resource type Rj has been allocated to thread Ti 

 Pictorially, we represent each thread Ti as a circle and each resource type Rj as a rectangle. 
Each instance as a dot within the rectangle. 

 The resource-allocation graph shown in Figure below depicts the following situation. 

 The sets T, R, and E: 
i. T = {T1, T2, T3 } 

ii. R = {R1, R2, R3, R4 } 
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iii. E = {T1 → R1, T2 → R3, R1 → T2, R2 → T2, R2 → T1, R3 → T3} 
 

 
 

 

 

 Resource Instances: 
i. One instance of R1 

ii. Two instances of R2 
iii. One instance of R3 
iv. Three instance of R4 

 Process/Thread States: 
i. T1 holds one instance of R2 and is waiting for an instance of R1 

ii. T2 holds one instance of R1, one instance of R2, and is waiting for an instance of 
R3 

iii. T3 is holds one instance of R3 

 Given the definition of a resource-allocation graph, it can be shown that, if the graph 
contains no cycles, then no thread in the system is deadlocked. If the graph does contain a 
cycle, then a deadlock may exist. 

 If each resource type has exactly one instance, then a cycle implies that a deadlock has 
occurred. If the cycle involves only a set of resource types, each of which has only a single 
instance, then a deadlock has occurred.  

 If each resource type has several instances, then a cycle does not necessarily imply that a 
deadlock has occurred. In this case, a cycle in the graph is a necessary but not a sufficient 
condition for the existence of deadlock. 

 To illustrate this concept, we return to the resource-allocation graph depicted in Figure. 
Suppose that thread T3 requests an instance of resource type R2. Since no resource instance 
is currently available, we add a request edge T3 → R2 to the graph below.  

 

 At this point, two minimal cycles exist in 
the system: 

T1 → R1 → T2 → R3 → T3 → R2 → T1 
T2 → R3 → T3 → R2 → T2 

 Threads T1, T2, and T3 are deadlocked. Thread T2 is waiting for the resource R3, which is 
held by thread T3. Thread T3 is waiting for either thread T1 or thread T2 to release resource 
R2. In addition, thread T1 is waiting for thread T2 to release resource R1. 

 Now consider the resource-allocation graph in Figure below. In this example, we also have 
a cycle: 

T1 → R1 → T3 → R2 → T1 

 
 However, there is no deadlock. Observe that thread T4 may release its instance of resource 

type R2. That resource can then be allocated to T3, breaking the cycle. 
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3. Methods for handling Deadlocks 
 We can deal with the deadlock problem in one of three ways: 

1) We can use a protocol to prevent or avoid deadlocks, ensuring that the system will 
never enter a deadlock state. 

2) We can allow the system to enter a deadlock state, detect it, and recover. 
3) We can ignore the problem altogether and pretend that deadlocks never occur in the 

system. 

 To ensure that deadlocks never occur, the system can use either a deadlock prevention or 
a deadlock-avoidance scheme. 

 Deadlock prevention provides a set of methods to ensure that at least one of the necessary 
conditions cannot hold. These methods prevent deadlocks by constraining how requests 
for resources can be made. 

 Deadlock avoidance requires that the operating system be given additional information in 
advance concerning which resources a process will request and use during the lifetime. 
With additional knowledge, the operating system can decide for each request whether or 
not the process should wait.  

 If a system does not employ either a deadlock-prevention or a deadlock-avoidance 
algorithm, then a deadlock situation may arise. In this environment the system can provide 
an algorithm that examines the state of the system to determine when a deadlock has 
occurred and an algorithm to recover from the deadlock. 

4. Deadlock prevention: By ensuring that at least one of the necessary conditions 
cannot hold, we can prevent the occurrence of a deadlock.

4.1. Mutual Exclusion 
 The mutual exclusion must hold. That is, at least one resource must be non-sharable.  

 Sharable resources do not require mutually exclusive access and thus cannot be involved 
in a deadlock. Read-only files are a good example of a shared resource. 

 In general, we cannot prevent deadlocks by denying the mutual-exclusion condition, 
because some resources are intrinsically non-sharable.  

4.2. Hold and Wait 
 We must guarantee that, whenever a process requests a resource, it does not hold any other 

resources. Require process to request and be allocated all its resources before it begins 
execution or allows a process to request resources only when it has none. 

 Disadvantages  
 resource utilization may be low, since resources may be allocated but unused for a 

long period. 
 Starvation is possible. A process that needs several popular resources may have to 

wait indefinitely. 
4.3. No preemption  
 We must guarantee that, no preemption of resources that have already been allocated.  

 If a process is holding some resources and requests another resource that cannot be 
immediately allocated to it, then all resources the process is currently holding are 
preempted. 

 Preempted resources are added to the list of resources for which the process is waiting. 

 The process will be restarted only when it can regain its old resources, as well as the new 
ones that it is requesting. 
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4.4. Circular Wait 
 One way to ensure that this condition never holds is to impose a total ordering of all 

resource types and to require that each process requests resources in an increasing order of 
enumeration. 

 Let R={R1, R2,…. Rm,} be a set of resource types. We assign to each resource type a unique 
integer number, which allows us to compare two resources and to determine whether one 
precedes another in our ordering. 

 We can now consider the following protocol to prevent deadlocks:  
 Each process can request resources only in an increasing order of enumeration. That 

is , a process can initially request any number of instances of a resource type Ri 
 After that, the process can request instances of resource type Rj.. Alternatively, we can 

require that a process requesting an instance of resource type Rj must have released 
any resources Ri.

5. Deadlock avoidance 
 Deadlock-prevention algorithms prevent deadlocks by limiting how requests can be made.   

The limits ensure that at least one of the necessary conditions for deadlock cannot occur. 
 Possible side effects of preventing deadlocks by this method are low device utilization and 

reduced system throughput. 
 Deadlock avoidance requires additional/prior information about how resources are to be 

requested. 
 Various algorithms that use this approach differ in the amount and type of information 

required. 
 The simplest and most useful model requires that each process declare the maximum 

number of resources of each type that it may need. 
 The deadlock-avoidance algorithm dynamically examines the resource-allocation state to 

ensure that there can never be a circular-wait condition. 
 The resource-allocation state is defined by the number of available and allocated resources 

and the maximum demands of the process. 
5.1. Safe State 
 A system is safe if the system can allocate resources to each process in some order and 

still avoid a deadlock. 

 When a thread requests an available resource, system must decide if immediate allocation 
leaves the system in a safe state 

 System is in safe state if there exists a sequence <T1, T2, …, Tn> of ALL the threads  in 
the systems such that for each Ti, the resources that Ti can still request can be satisfied by 
currently available resources + resources held by all the Tj, with j < i. 

 That is: 
 If Ti resource needs are not immediately available, then Ti can wait until all Tj have 

finished 
 When Tj is finished, Ti can obtain needed resources, execute, return allocated 

resources, and terminate 
 When Ti terminates, Ti +1 can obtain its needed resources, and so on 

 If a system is in safe state, then no deadlocks 

 If a system is in unsafe state, then there is a possibility of deadlock 
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 Given the concept of a safe state, we can define avoidance algorithms that ensure that the 

system will never deadlock. The idea is simply to ensure that the system will always remain 
in a safe state.  

5.2. Resource-Allocation-Graph Algorithm 
 If we have a resource-allocation system with only one instance of each resource type, we 

can use a variant of the resource-allocation graph. In addition to the request and assignment 
edges, we introduce a new type of edge, called a claim edge. 

 Claim edge: Ti  Rj indicated that process Tj may request resource Rj; represented by a 
dashed line.  

 Claim edge converts to request edge when a thread requests a resource. Request edge 
converted to an assignment edge when the  resource is allocated to the thread 

 When a resource is released by a thread, assignment edge reconverts to a claim edge 
 Resources must be claimed a priori in the system 

 Now suppose that process Ti requests resource Rj. The request can be granted only if 
converting the request edge TiRj to an assignment edge RjTj does not result in the 
formation of a cycle in the resource-allocation graph. 

 We can check for safety by using a cycle-detection algorithm. If no cycle exists, then the 
allocation of the resource will leave the system in a safe state.  

 If a cycle is found, then the allocation will put the system in an unsafe state. In that case, 
process Ti will have to wait for its requests to be satisfied.  

 
Resource allocation graph for deadlock avoidance. 

5.3. Banker’s Algorithm 
 Multiple instances of resources. Each thread must a priori claim maximum use. 

 When a thread requests a resource, it may have to wait. When a thread gets all its resources 
it must return them in a finite amount of time 

 Let n = number of processes, and m = no of resource types. 
Available:  A vector of length m indicates the number of available resources of each type.  If 
available [j] = k, there are k instances of resource type Rj  available 

Max: An n x m matrix defines the maximum demand of each process.  If Max [i,j] = k, then 
process Ti may request at most k instances of resource type Rj 
Allocation:  A n x m matrix defines the number of resources of each type currently allocated 
to each process. If Allocation[i,j] = k then Ti is currently allocated k instances of Rj 
Need:  A n x m matrix indicates the remaining resource need of each process. If Need[i,j] = k, 
then Ti may need k more instances of Rj to complete its task Need [i,j] = Max[i,j] – Allocation [i,j] 
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Safety Algorithm 
1. Let Work and Finish be vectors of length m and n, respectively.   

Initialize:  
Work = Available  
Finish [i] = false for i = 0, 1, …, n- 1 

2. Find an i such that both:  
(a) Finish [i] == false 
(b) Needi  ≤ Work 

  If no such i exists, go to step 4 
3. Work = Work + Allocationi 

Finish[i] = true 
 go to step 2 

4. If Finish[i] = = true for all i, then the system is in a safe state. 
Resource-Request Algorithm 
Requesti = request vector for process Ti.  If Requesti[j] = k then process Ti wants k instances 
of resource type Rj 
1. If Requesti  Needi go to step 2.  Otherwise, raise error condition, since process has 

exceeded its maximum claim 

2. If Requesti  Available, go to step 3.  Otherwise Ti  must wait, since resources are not 
available 

3. Pretend to allocate requested resources to Ti by modifying the state as follows: 
  Available = Available  – Requesti; 
  Allocationi = Allocationi + Requesti; 
  Needi = Needi – Requesti; 

If safe  the resources are allocated to Ti 

If unsafe  Ti must wait, and the old resource-allocation state is restored 

Example: 

Process Allocation 
A       B       C 

Max 
A      B      C 

Available 
A      B    C 

P0 1         1        2  4         3        3  2       1     0  
P1 2         1        2 3         2        2  
P2 4         0        1 9         0        2  
P3 0         2        0 7         5        3  
P4 1         1        2 1         1        2  
 calculate the content of the need matrix? 

 Check if the system is in a safe state? 

 Determine the total sum of each type of resource? 
1. The Content of the need matrix can be calculated by using the formula given below: 
Need = Max – Allocation 
 
 
 
 
 

Process Need 
A B C 

P0 3 2 1 
P1 1 1 0 
P2 5 0 0 
P3 7 3 3 
P4 0 0 0 
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2. Let us now check for the safe state. 
Safe sequence: 
1. For process P0, Need = (3, 2, 1) and Available = (2, 1, 0) 
Need <=Available = False 
So, the system will move to the next process. 
2. For Process P1, Need = (1, 1, 0) Available = (2, 1, 0) 
Need <= Available = True 
Request of P1 is granted. 
Available = Available +Allocation 
= (2, 1, 0) + (2, 1, 2) = (4, 2, 2) (New Available) 
3. For Process P2, Need = (5, 0, 1) Available = (4, 2, 2) 
Need <=Available = False 
So, the system will move to the next process. 
4. For Process P3, Need = (7, 3, 3) Available = (4, 2, 2) 
Need <=Available = False 
So, the system will move to the next process. 
5. For Process P4, Need = (0, 0, 0) Available = (4, 2, 2) 
Need <= Available = True 
Request of P4 is granted. 
Available = Available + Allocation 
= (4, 2, 2) + (1, 1, 2) = (5, 3, 4) now, (New Available) 
6. Now again check for Process P2, Need = (5, 0, 1) Available = (5, 3, 4) 
Need <= Available = True 
Request of P2 is granted. 
Available = Available + Allocation 
= (5, 3, 4) + (4, 0, 1) = (9, 3, 5) now, (New Available) 
7. Now again check for Process P3, Need = (7, 3, 3) Available = (9, 3, 5) 
Need <=Available = True 
The request for P3 is granted. 
Available = Available +Allocation 
= (9, 3, 5) + (0, 2, 0) = (9, 5, 5) 
8. Now again check for Process P0, = Need (3, 2, 1) = Available (9, 5, 5) 
Need <= Available = True 
So, the request will be granted to P0. 
Safe sequence: < P1, P4, P2, P3, P0> 
The system allocates all the needed resources to each process. So, we can say that the system 
is in a safe state. 
3. The total amount of resources will be calculated by the following formula: 

The total amount of resources= sum of columns of allocation + Available 

= [8 5 7] + [2 1 0] = [10 6 7] 
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6. Deadlock detection 
 If a system does not employ either a deadlock-prevention or a dead-lock avoidance 

algorithm, then a deadlock situation may occur. 

 In this environment, the system may provide: 
 An algorithm that examines the state of the system to determine whether a deadlock 

has occurred. 
 An algorithm to recover from the deadlock

6.1. Single Instance of Each Resource Type 
 If all resources have only a single instance, then we can define a deadlock-detection 

algorithm that uses a variant of the resource-allocation graph, called wait-for graph. 
 We obtain this graph from the resource-allocation graph by removing the resource nodes 

and collapsing the appropriate edges. 

 
 An edge PiPj in a wait-for graph implies that process Pi is waiting for process Pj to release 

a resource that Pi needs. An edge PiPj exists in a wait-for graph if and only if the 
corresponding resource-allocation graph contains two edges PiRq and Rq  Pj for some 
resources Rq  

 A deadlock exists in the system if and only if the wait-for graph contains a cycle. To detect, 
deadlocks, the system needs to maintain the wait-for graph and periodically invoke an 
algorithm that searches for a cycle in the graph. 

6.2. Several Instances of a Resource Type 
 The deadlock-detection algorithm employs several time-varying data structures that are 

similar to those used in the banker’s algorithm 
 Available: A vector of length m indicates the number of available resources of each type. 
 Allocation: An n x m matrix defines the number of resources of each type currently allocated      
to each process 
 Request: An n x m matrix indicates the current request of reach process. If Request[i][j] 
equals k, then process Pi is requesting k more instances of resource type Rj.  

Detection Algorithm 
1. Let Work and Finish be vectors of length m and n, respectively. Initialize Work = Available. 
For i = 0, 1, ..., n–1, if Allocationi ≠ 0, then Finish[i] = false. Otherwise, Finish[i] = true. 
2. Find an index i such that both 

a. Finish[i] == false 
b. Requesti ≤ Work 

    If no such i exists, go to step 4. 
3. Work = Work + Allocationi 
    Finish[i] = true 
Go to step 2. 
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4. If Finish[i] ==false for some i, 0 ≤ i < n, then the system is in a deadlocked state. Moreover, 
if Finish[i] == false, then thread Ti is deadlocked. 

 This algorithm requires an order of m x n2 operations to detect whether the system is in a 
deadlocked state. 

6.3. Detection-Algorithm Usage 
 When, and how often, to invoke depends on: 

 How often a deadlock is likely to occur? 
 How many processes will need to be rolled back? 

o one for each disjoint cycle 

 If detection algorithm is invoked arbitrarily, there may be many cycles in the resource 
graph and so we would not be able to tell which of the many deadlocked threads “caused” 
the deadlock. 

7. Recovery from Deadlock 
 When a detection algorithm determines that a deadlock exists, several natives are 

available.   
1) Inform the operator that a deadlock has occurred and to let  the operator deal with 

the deadlock manually. 
2) Let the system recover from the deadlock automatically. 

 There are two options for breaking a deadlock.  
1) Simply abort one or more processes to break the circular wait. 
2) Preempt some resources from one or more of the deadlocked processes 

7.1. Process Termination: 
 To eliminate deadlocks by aborting a process, we use one of two methods. In both methods, 

the system reclaim all resources allocated to the terminated processes. 
 Abort all deadlocked processes. 
 Abort one process at a time until the deadlock cycle is eliminated. 

 Aborting a process is not be easy task. If partial termination method is used, then we must 
determine which deadlocked process should be terminated. 

 In which order should we choose to abort? 
1) Priority of the thread 
2) How long has the thread computed, and how much longer to completion 
3) Resources that the thread has used 
4) Resources that the thread needs to complete 
5) How many threads will need to be terminated 
6) Is the thread interactive or batch? 

7.2. Resource Preemption  
 To eliminate deadlocks using resource preemption, we successively preempt some 

resources from processes and give these resources to other processes until the deadlock 
cycle is broken 

 If preemption is required to deal with deadlocks, then three issues need to be addressed: 
 Selecting a victim – We must determine the order of preemption to minimize cost 
 Rollback – We must rollback the process to some safe state and restart it from that state 
 Starvation – we must ensure that a process can be picked as a victim only a (small) 

finite number of times. The most common solution is to include the number of rollbacks 
in the cost factor.    


