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Unit II 

PROCESS CONCEPT 
1. Process Concept 

 A process is the unit of work in a modern time-sharing system.  

 An operating system executes a variety of programs that run as a process.  

1.1. The Process 

 Process – a program in execution; process execution must progress in sequential fashion. No 

parallel execution of instructions of a single process 

 Multiple parts of a process: 

 The program code, also called text section 

 Stack containing temporary data 

 Function parameters, return addresses, local variables 

 Data section containing global variables 

 Heap containing memory dynamically allocated during run time 

 

 Program is passive entity stored on disk (executable file): process is active 

 Program becomes process when an executable file is loaded into memory 

 Execution of program started via GUI mouse clicks, command line entry of its name, etc. 

 One program can be several processes 

 Consider multiple users executing the same program. 

1.2. Process State 

As a process executes, it changes state 

 New:  The process is being created 

 Ready:  The process is waiting to be assigned 

to a processor 

 Running:  Instructions are being executed 

 Waiting:  The process is waiting for some 

event to occur 

 Terminated:  The process has finished 

execution  

 These names are arbitrary, and they vary across operating systems. The states that they represent 

are found on all systems. 

 Only one process can be running on any processor core at any instant of time. Many processes 

may be ready and waiting, however. The state diagram corresponding to these states is presented 

in Figure above 
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1.3. Process Control Block 

Each process is represented in the operating system by a process control block (PCB) also called a task 

control block.  

 Process state – the state many be new, 

running, waiting, halted, and so on. 

 Program counter – location of next 

instruction to execute 

 CPU registers – contents of all process-

centric registers, they include 

accumulators, index registers, stack 

pointers, and general-purpose registers. 

 CPU scheduling information- process 

priority, pointers to scheduling queues, and 

any other scheduling parameters. 

 Memory-management information – 

memory allocated to the process: value of 

the base and limit registers and the page 

tables, or the segment tables,  

 Accounting information – amount of CPU 

time used, time limits, account numbers, 

job or process numbers 

 I/O status information – List of I/O devices 

allocated to process, list of open files and so 

on. 

 

 In brief, the PCB simply serves as the repository for any information that may vary from 

process to process. 

1.4. Threads 

 A Process is a program that performs a single thread of execution.  

 For example, when a process is running a word-processor program, a single thread of instructions 

is being executed. This single thread control allows the process to perform only one task at a 

time. The user cannot simultaneously type in characters and run the spell checker within the 

same process. 

 Most modern operating systems have extended the process concept to allow a process to have 

multiple threads of execution and thus to perform more than one task at a time.  

 This feature is especially beneficial on multicore systems, where multiple threads can run in 

parallel.  

 On a system that supports threads, the PCB is expanded to include information for each thread. 
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2. Process Scheduling 

 The objective of multiprogramming is to have process running at all times, to maximize CPU 

utilization. The objective of time sharing is to switch the CPU among processes so frequently 

that users can interact with each program while it is running. 

 To meet these objectives, the process scheduler selects an available process for next execution 

on the CPU.

2.1. Scheduling Queues 

 As process enter the system, they put into a job queue, which consists of all processes in the 

system. 

 Maintains scheduling queues of processes 

 Ready queue – set of all processes residing in main memory, ready and waiting to 

execute 

 Wait queues – set of processes waiting for an event (i.e., I/O) 

 Processes migrate among the various queues 

 This queue is generally stored as a linked list. Each PCB includes a pointer field that points to 

the next PCB in the ready queue. 

 

 When a process is allocated the CPU, it executes for a while and eventually quits, is interrupted, 

or waits for the occurrence of a particular event, such as the completion of an I/O request. 

 Suppose the process makes an I/O request to a shared device, such as disk. Since there are 

many processes in the system, the disk may be busy with the I/O request of some other process. 

The process may have to wait for the disk.  

 The list of processes waiting for a particular I/O device is called a device queue. Each device 

has its own device queue. 
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 A common representation for a discussion of process scheduling is a queueing diagram, such 

as that in Figure. Each rectangular box represents a queue.  

 A new process is initially put in the ready queue. It waits there until it is selected for execution, 

or is dispatched. Once the process is allocated the CPU and is executing, one of several events 

could occur: 

 The process could issue an I/O request and then be placed in an I/O queue. 

 The process could create a new subprocess and wait for the subprocess's termination. 

 The process could be removed forcibly from the CPU, as a result of an interrupt, and 

be put back in the ready queue. 

2.2. Schedulers 

 A process migrates among the various scheduling queues throughout its lifetime. The operating 

system must select, for scheduling purposes, processes from these queues in some fashion. The 

selection process is carried out by the appropriate scheduler. 

 Often, in a batch system, more processes are submitted than can be executed immediately. 

These processes are spooled to a mass-storage device, where they are kept for later execution.  

 The long-term scheduler, or job scheduler, selects processes from this pool and loads them into 

memory for execution.  

 The short-term scheduler, or CPU scheduler, selects from among the processes that are ready 

to execute and allocates the CPU to one of them. 

 The primary distinction between these two schedulers lies in frequency of execution.  

 The short-term scheduler must select a new process for the CPU frequently. A process may 

execute for only a few milliseconds before waiting for an I/O request. Often, the short-term 

scheduler executes at least once every 100 milliseconds. Because of the short time between 

executions, the short-term scheduler must be fast.  
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 The long-term scheduler executes much less frequently; minutes may separate the creation of 

one new process and the next. The long-term scheduler controls the degree of 

multiprogramming (the number of processes in memory). 

 If the degree of multiprogramming is stable, then the average rate of process creation must be 

equal to the average departure rate of processes leaving the system. Thus, the long-term 

scheduler may need to be invoked only when a process leaves the system. 

 In general, most processes can be described as either I/O bound or CPU bound.  

 An I/O-bound process is one that spends more of its time doing I/O than it spends doing 

computations.  

 A CPU bound process, in contrast, generates I/O requests infrequently, using more of its time 

doing computations.  

 The long-term scheduler select a good process mix of I/O-bound and cpu-bound processes. If 

all processes are I/O bound, the ready queue will almost always be empty, and the short-term 

scheduler will have little to do. If all processes are CPU bound, the I/O waiting queue will 

almost always be empty, devices will go unused, and again the system will be unbalanced.  

 The system with the best performance will thus have a combination of CPU-bound and I/O-

bound processes. 

 Some operating systems, such as time-sharing systems, may introduce an additional, 

intermediate level of scheduling - medium-term scheduler. 

 The key idea behind a medium-term scheduler is that sometimes it can be advantageous to 

remove processes from memory and thus reduce the degree of multiprogramming. Later, the 

process can be reintroduced into memory, and its execution can be continued where it left off. 

This scheme is called swapping. 

 The process is swapped out, and is later swapped in, by the medium-term scheduler. Swapping 

may be necessary to improve the process mix or because a change in memory requirements has 

overcommitted available memory, requiring memory to be freed up.  

2.3. Context Switch 

 A Context Switch occurs when the CPU switches from one process to another. 

 The context is represented in the PCB of the process; it includes the value of the CPU registers, 

the process state, and memory-management information.  

 When CPU switches to another process, the system must save the state of the old process and 

load the saved state for the new process via a context switch 

 Switching the CPU to another process requires performing a state save of the current process 

and a state restore of a different process. This task is known as a context switch.  
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 Context-switch time is pure overhead, because the system does no useful work while switching. 

 Its speed varies from machine to machine, depending on the memory speed, the number of 

registers that must be copied, and the existence of special instructions. 

 

3. Operations on Processes 

 The processes in most systems can execute concurrently, and they may be created and deleted 

dynamically. Thus, these systems must provide a mechanism for process creation and process 

termination.

3.1. Process Creation 

 During the course of execution, a process may create several processes. Parent process create 

children processes, which in turn create other processes, forming a tree of processes. 

 In general, when a process creates a child process that child process will need certain resources 

(CPU time, memory, files, I/O devices) to accomplish its task. 

 A child process may be able to obtain its resources directly from the operating system, or it may 

be constrained to a subset of resources of the parent process. 

 The parent may have to partition its resources among its children, or it may be able to share some 

resources among several of its children.  

 When a process creates a new process, two possibilities for execution exist: 

1. The parent continues to execute concurrently with its children 

2. The parent waits until some or all of its children have terminated 

 There are also two address-space possibilities for the new process: 

1. The child process is a duplicate of the parent process. 

2. The child process has a new program loaded into it. 

Example: Process creation in UNIX Operating System 

 In UNIX, each process is identified by its identifier, which is a unique integer.  
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 A new process is created by the fork() system call. The new process consists of a copy of the 

address space of the original process. This mechanism allows the parent process to communicate 

easily with its child process.  

 Both processes continue execution at the instruction after the fork(), with one difference: the 

return code for the fork() is zero for the new (child) process, whereas the (nonzero) process 

identifier of the child is returned to the parent. 

 After a fork() system call, one of the two processes typically uses the exec() system call to 

replace the process's memory space with a new program.  

 The exec() system call loads a binary file into memory (destroying the memory image of the 

program containing the exec 0 system call) and starts its execution.  

 In this manner, the two processes are able to communicate and then go their separate ways. The 

parent can then create more children; or, if it has nothing else to do while the child runs, it can 

issue a wait() system call to move itself off the ready queue until the termination of the child. 

 

3.2. Process Termination 

 Process executes last statement and then and asks the operating system to delete it using the 

exit() system call. At that point, the process may return a status value to its parent process.  

 All the resources of the process including physical and virtual memory, open files, and I/O 

buffers are deallocated by the operating system. 

 Termination can occur in other circumstances as well.  

 A process can cause the termination of another process via an operating system call. Usually, 

such a system call can be invoked only by the parent of the process that is to be terminated. 

Otherwise, users could arbitrary kill each other’s jobs. 

 A parent may terminate the execution of one of its children for a variety of reasons, such as 

these: 

 The child has exceeded its usage of some of the resources that it has been allocated. 

 The task assigned to the child is no longer required. 

 The parent is exiting, and the operating system does not allow a child to continue if its 

parent terminates. 



Unit-II                                                             Dept of CSE, PVPSIT                                        Operating Systems 

 

 Some system do not allow a child to exist if its parent has terminated. In such systems, if a 

process terminates, then all its children must also be terminated. This phenomenon, referred to 

as cascading termination, is normally initiated by the operating system. 

 To illustrate process execution and termination, consider that, in LINUX and UNIX systems, we 

can terminate a process by using the exit() system call, providing an exit status as parameter: 

/* exit with status 1 */ 

exit(1); 

 A parent process may wait for the termination of a child process by using the wait() system call. 

The wait() system call is passed a parameter that allows the parent to obtain the exit status of 

the child. This system call also returns the process identifier of the terminated child so that the 

parent can tell which of its children has terminated: 

pid_t pid; 

int status: 

pid = wait(&status); 

 When a process terminates, its resources are deallocated by the operating system.  

 A process that has terminated, but whose parent has not yet called wait() is known as a zombie 

process. A parent process terminated without invoking wait() is known as orphan process.

4. Interprocess Communication 

 Process executing concurrently in the operating system may be either independent processes or 

cooperating process. 

 A process is independent if it cannot affect or be affected by the other processes executing in 

the system. Any process that does not share data with any other process is independent. 

 A process in cooperating if it can affect or be affected by the other processes executing in the 

system. Clearly any process that shares data with other process is a cooperating process. 

 Reasons for providing an environment that allows process cooperation: 

 Information sharing: Since several users may be interested in the same piece of 

information, we must provide an environment to allow concurrent access to such 

information. 

 Computation speedup: If we want a particular task to run faster, we must break it into 

subtasks, each of which will be executing in parallel with the others. 

 Modularity: We may want to construct the system in a modular fashion, dividing the 

system functions into separate processes or threads. 

 Convenience: Even an individual user may work on many tasks at the same time. For 

instance, a user many be editing, listening to music, and compiling in parallel.  

 Cooperating processes need interprocess communication (IPC) mechanism that allow them to 

exchange data and information. There are two fundamental models of IPC:  

 Shared memory and  

 Message passing 
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 In the shared-memory model, a region of memory that is shared by cooperating process is 

established. Processes can then exchange information by reading and writing data to the shared 

region. 

 In the message-passing model, communication takes place by means of messages exchanged 

between the cooperating processes. 

 The two communications models are contrasted in Figure below 

 

 

4.1. Shared-Memory Systems 

 In the shared-memory model, a region of memory that is shared by cooperating process is 

established. Typically, a shared-memory region resides in the address space of the process 

creating the shared-memory segment. 

 Other processes that wish to communicate using this shared-memory segment must attach it to 

their address space. The processes can exchange information by reading and writing data in the 

shared areas. The form of the data and the location are determined by these processes and are 

not under the operating system’s control. 

 The processes are also responsible for ensuring that they are not writing to the same location 

simultaneously.  

Example: Producer-Consumer Problem 

 A producer process produces information that is consumed by a consumer process.  

 For example, a compiler may produce assembly code that is consumed by an assembler. The 

assembler in turn may produce object modules that are consumed by the loader.  

 One solution to the producer – consumer problem uses shared memory.  

 To allow producer and consumer processes to run concurrently, we must have available a 

buffer of items that can be filled by the producer and emptied by the consumer.  

 This buffer will reside in a region of memory that is shared by the producer and consumer 

processes. The producer and consumer must be synchronized, so that the consumer does 

not try to consume an item that has not yet been produced. 

 Two types of buffers can be used 

 The unbounded buffer places no practical limit on the size of the buffer. The consumer 

may have to wait for new items, but the producer can always produce new items. 

 The bounded buffer assumes a fixed buffer size. In this case, the consumer must wait if 

the buffer is empty, and the producer must wait if the buffer is full. 

 One solution to the producer – consumer problem uses shared memory. 

 The following variables reside in a region of memory shared by the producer and consumer 

processes:  

#define BUFFER_SIZE 10 

typedef struct { 
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  . . . 

} item; 

item buffer[BUFFER_SIZE]; 

int in = 0; 

int out = 0; 

 The shared buffer is implemented as a circular array with two logical pointers: in and out. 

The variable in points to the next free position in the buffer; out points to the first full 

position in the buffer. 

 The code for the producer process is  

item next_produced;  

while (true) {  

 /* produce an item in next produced */  

 while (((in + 1) % BUFFER_SIZE) == out)  

  ; /* do nothing */  

 buffer[in] = next_produced;  

 in = (in + 1) % BUFFER_SIZE;  

}  

 The code for the consumer process is 

item next_consumed;  

while (true) { 

 while (in == out)  

  ; /* do nothing */ 

 next_consumed = buffer[out];  

 out = (out + 1) % BUFFER_SIZE; 

 /* consume the item in next consumed */  

}  

 The producer process has a local variable next_produced in which the new item to be produced 

is stored. The consumer process has a local variable next_consumed in which the item to be 

consumed is stored. 

 Solution is correct, but can only use BUFFER_SIZE-1 elements 

4.2. Message-Passing Systems 

 In the message-passing model, communication takes place by means of messages exchanged 

between the cooperating processes.  

 Message passing provides a mechanism to allow processes to communicate and to synchronize 

their actions without sharing the same address space. 

 A message-passing facility provides at least two operations: 

send(message)  receive(message) 

 Message sent by a process can be either fixed or variable in size.  

 If processes P and Q want to communicate 

 they must send messages to and receive messages from each other:  

 a communication link must exist between them. 

 There are several methods for logically implementing a link and send() / receive() operations: 

 Direct or indirect communication 

 Synchronous or asynchronous communication 

 Automatic or explicit buffering 

4.2.1. Naming 
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 Under direct communication, each process that wants to communicate must explicitly name 

the recipient or sender of the communication. In this scheme, the send() and receive() 

primitives are defined as: 

 send(P, message) – Send a message to process P 
 receive(Q, message) – Receive a message from process Q 

 This scheme exhibits symmetry in addressing; that is both, the sender process and receiver 

process must name the other to communicate. 

 In asymmetric scheme, only the sender names the recipient; the recipient is not required to 

name the sender. 

 send(P, message) – Send a message to process P 
 receive(id, message) – Receive a message from any process 

 The disadvantage in both of these schemes is the limited modularity of the resulting process 

definitions. 

 With indirect communication, the messages are sent to and received from mailboxes.  

 A Mailbox can be viewed abstractly as an object into which messages can be placed by 

processes and from which messages can be removed. 

 Each mailbox has a unique identification. A process can communicate with another process 

via a number of different mailboxes, but two processes communicate only if they have a 

shared mailbox.  

 The send() and received() primitives are defined as follows: 

 send(A, message) – Send a message to mailbox A. 

 receive(A, message) – Received a message from mailbox A. 

 In this scheme. a communication link has the following properties 

 Link is established only if processes share a common mailbox 

 A link may be associated with many processes 

 Each pair of processes may share several communication links, with each link 

corresponding to one mailbox. 

 Mailbox Sharing 

 Suppose that processes P1, P2, and P3 all share mailbox A 

 P1 sends a message to A, while P2 and P3 execute receive() operation 

 Who gets the message? 

 The solution depends on which of the following methods we choose 

 Allow a link to be associated with two processes at most. 

 Allow at most one process at a time to execute a receive() operation. 

 Allow the system to select arbitrary which process will receive the message. 

4.2.2. Synchronization 

 Message passing may be either blocking or nonblocking. 

 Blocking is considered synchronous 

 Blocking send -- the sender is blocked until the message is received 

 Blocking receive -- the receiver is  blocked until a message is available 

 Non-blocking is considered asynchronous 

 Non-blocking send -- the sender sends the message and continue 

 Non-blocking receive -- the receiver receives either a valid message,  or a null message 
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 Different combinations of send() and receive() are possible. When both send() and receive() 

are blocking, we have a rendezvous between the sender and the receiver.   

 The solution to the producer-consumer problem becomes trivial when we use blocking send() 

and receive() statements.  

 The producer merely invokes the blocking send() call and waits until the message is 

delivered to either the receiver or the mailbox.   

message next_produced; 

 while (true) { 

 /* produce an item in next_produced */ 

      send(next_produced);  

     } 

 The consumer invokes receive(), it blocks until a message is available. 

     message next_consumed; 

         while (true) { 

   receive(next_consumed) 

  /* consume the item in next_consumed */ 

         } 

4.2.3. Buffering 

 Whether communication is direct or indirect, messages exchanged by communicating 

processes reside in a temporary queue. Basically, such queues can be implemented in three 

ways: 

1. Zero capacity – The queue has a maximum length of zero; no messages are queued on a 

link. Sender must block until the recipient receives the message. 

2. Bounded capacity – The queue has a finite length of n; thus, at most n can reside in it. 

Sender must wait if link is full 

3. Unbounded capacity – The queue’s length is potentially infinite; Sender never blocks. 
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Unit II 

THREADS AND CONCURRENCY 
1. Overview 

 A thread is a basic unit of CPU utilization; it comprises a thread ID, a program counter, a register 

set, and a stack.  It shares with other threads belonging to the same process its code section, data 

section, and other operating-system resources, such as open files and signals. 

 A traditional process has a single thread of control. If a process has multiple threads of control, 

it can perform more than one task at a time. 

1.1. Motivation 

 Most software applications that run on modern computers are multithreaded. 

 An application typically is implemented as a separated process with several threads of 

control. 

 Multiple tasks with the application can be implemented by separate threads 

 Update display 

 Fetch data 

 Spell checking 

 Answer a network request 

 Process creation is heavy-weight while thread creation is light-weight 

 Can simplify code, increase efficiency 

 Kernels are generally multithreaded 

1.2. Benefits 

 Responsiveness – Multithreading an interactive application may allow a program to continue 

running even if part of it is blocked or is performing a lengthy operation. It is especially useful 

in designing user interfaces. 

 Resource Sharing – Processes can share resources through techniques such as shared memory 

and message passing.   

 Economy – Allocating memory and resources for process creation is costly. Because threads 

share the resources of the process to which they belong, it is more economical to create and 

context-switch threads.  

 Scalability – The benefits of multithreading can be even greater in multiprocessor architecture, 

where threads may be running n parallel on different processing cores. 
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2. Multicore Programming 

 Multithread programming provides a mechanism for more efficient use of multiple cores and 

improved concurrency. 

 Consider an application with four threads.  

 On a system with a single computing core, concurrency merely means that the execution of 

the threads will be interleaved over time, because the processing core is capable of executing 

only one thread at a time. 

 
 On a system with multiple cores, however, concurrency means that the threads can run in 

parallel, because the system can assign a separate thread to each core. 

 
 A system is parallel if it can perform more than one task simultaneously. In contrast, a 

concurrent system supports more than one task by allowing all the tasks to make progress.  

2.1. Programming Challenges: In general, five areas present challenges in programming 

for multicore systems 

1. Identifying tasks: This involves examining applications to find areas that can be divided into 

separate, concurrent tasks. 

2. Balance: While identifying tasks that can run in parallel, programmers must also ensure that 

the tasks perform equal work of equal value. 

3. Data splitting: Just as applications are divided into separate tasks, the data accessed and 

manipulated by the tasks must be divided to run on separate cores. 

4. Data dependency: The data accessed by the tasks must be examined for dependencies between 

two or more tasks. When one task depends on data from another, programmers must ensure 

that the execution of the tasks is synchronized to accommodate the data dependency. 

5. Testing and debugging: When a program is running in parallel on multiple cores, many 

different execution paths are possible. Testing and debugging such concurrent programs is 

inherently more difficult than testing and debugging single-threaded applications.  

2.2. Types of Parallelism 

 In general, there are two types of parallelism: data parallelism and task parallelism. 

 Data parallelism focuses on distributing subsets of the same data across multiple computing 

cores and performing the same operation on each core. 

 Consider, for example, summing the contents of an array of size N.  

 On a single-core system, one thread would simply sum the elements [0] … [N-1].  

 On a dual-core system, however, thread A, running on core 0, could sum the elements 

[0]…[N/2-1] while thread B, running on core 1,  could sum the elements [N/2] … [N-1]. 

The two threads would be running in parallel on separate computing cores.  

 Task parallelism involves distributing not data but tasks (threads) across multiple computing 

cores. Each thread is performing a unique operation. Different threads may be operating on the 

same data, or they may be operating on different data. 
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 Consider an example of task parallelism might involve two threads, each performing a unique 

statistical operation on the array of elements. The threads again are operating on separate 

computing cores, but each is performing a unique operation.  

AMDAHL’S LAW 

 AMDAHL’S Law is a formula that identifies potential performance gains from adding 

additional computing cores to an application that has both serial and parallel components. 

 If S is the portion of the application that must be performed serially on a system with N 

processing cores, the formula is as follows: 

 
 As an example, if we have an application that is 75% parallel and 25% serial, moving from one 

to two cores results in speedup of 1.6 times. If we add two additional cores, the speedup is 2.28 

times. As N approaches to infinity, speedup approaches to 1/S. 

 Serial portion of an application has disproportionate  effect on performance gained by adding 

additional cores

3. Mutlithreading Models 

 User threads are managed by user-level thread libraries without the kernel support. Three 

primary thread libraries are POSIX  Pthreads, Windows threads, Java Threads 

 Kernel threads are supported and managed directly by the operating system. Virtually all 

general-purpose operating systems including Windows, Linux, Mac OS X, and Solaris support 

kernel threads. 

3.1. Many-to-one Model 

 The many-to-one model maps many user-level threads to one kernel thread. Thread 

management is done by the thread library in user space, so it is efficient. 

 The entire process will block if a thread makes a blocking system call.  

 Multiple threads may not run in parallel on multicore system because only one may be in 

kernel at a time.Very few systems continue to use the model because of its inability to take 

the advantage of multiple processing cores. 

 Examples: Solaris Green Threads and GNU Portable Threads

 
3.2. One-to-One Model 

 The one-to-one model maps each user thread to a kernel thread.  
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 It provides more concurrency than the many-to-one model by allowing another thread to run 

when a thread makes a blocking system call. It also allows multiple threads to run in parallel 

on multiprocessors.  

 The only drawback to this model is that creating a user thread requires creating the 

corresponding kernel thread. 

 Number of threads per process sometimes restricted due to overhead. 

 Examples: Windows and Linux

 
3.3. Many-to-Many Model 

 Allows many user-level threads to be mapped to many kernel threads. 

 The many-to-one model allows the developer to create as many user threads as he wishes, it 

does not result in true concurrency, because the kernel can schedule only one thread at a time. 

 The one-to-one model allows greater concurrency, but the developer has to be careful not to 

create too many threads within an application.  

 The many-to-many model suffers from neither of these shortcomings: developers can create 

as many user threads as necessary, and the corresponding kernel threads can run in parallel 

on a multiprocessor. 

 One variation of the many-to-many model multiplexes many user-level threads to a smaller 

or equal number of kernel threads but also allows a user-level thread to be bound to a kernel 

thread. This variation is sometimes referred to as the two-level model. 

 

4. Thread Libraries 

 A thread library provides the programmer with a API for creating and managing threads.  

 There are two primary ways of implementing a thread and library. 

1. Provide a library entirely in user space with no kernel support. 

 All code and data structures for the library exist in user space. 

 Invoking a function in the library results in a local function call in user space.     

2. Kernel-Level library supported directly by the operating system. 

 Code and data structures for the library exist in the kernel space.  

 Invoking a function in the API for the library typically results in a system call to the 

kernel 

 Three main thread libraries are in use today: POSIX Pthreads, Windows and Java. 

4.1. Pthreads 

 Pthreads refer to the POSIX standard defining an API for the thread creation and 

synchronization. This is a specification for thread behavior, not an implementation.  
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 Numerous systems implement the Pthreads specification; most are UNIX-type systems, 

including Linux, Mac OS X, and Solaris.  

 Windows doesn’t support Pthreads natively, some third-party implementations for Windows 

are available. 

 The C program shown below demonstrates the basic Pthreads API for constructing a 

multithreaded program that calculates the summation of a non-negative integer in a separate 

thread.  

 

 

 In a Pthreads program, separate threads begin execution in a specified function. When this 

program begins, a single thread of control begins in main(). After some initialization, 

main() creates a second thread that begins control in the runner() function. Both threads 

share the global data sum. 

 The statement pthread_t_tid declares the identifier for the thread we will create. The 

pthread_attr_t attr declaration represents the attributes for the thread.  

 A separate thread is created with the pthread_create() function call.  

 At this point, the program has two threads:  

 the initial thread in main() and  

 the summation thread performing the summation operation in the runner() function.  

 This program follows the fork-join strategy: after creating the summation thread, the parent 

thread will wait for it to terminate by calling the pthread_join() function.  

 The summation thread will terminate when it calls the function pthread_exit(). Once the 

summation thread has returned, the parent thread will output the value of the shared data 

sum.  

4.2. Window Threads 

 The technique for creating threads using the Windows thread library is similar to the 

Pthreads technique is several ways. 
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 We define the Summation() function that is to be performed in a separate thread. This 

function is passed a pointer to a void, which Windows defines as LPVOID.  

 Threads are created in the Windows API using the CreateThread() function, and – just as 

in Pthreads – a set of attributes for the thread is passed to this function. 

 Once the summation thread is created, the parent must wait for it to complete before 

outputting the value of Sum, as the value is set by the summation thread. 

 The parent thread wait for the summation thread using the WaitForSingleObject() 

function, which causes the creating thread to block until the summation thread has exited. 

 In situations that require waiting for multiple threads to complete, the 

WaitForMultipleObjects() function is used. This function is passed four parameters: 

1. The number of objects to wait for 

2. A pointer to the array of objects 

3. A flag indicating whether all objects have been signaled 

4. A timeout duration  

4.3. Java Threads 

 Java Threads are managed by the JVM. Java language and its API provide a rich set of 

features for the creation and management of threads. 
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 All Java programs comprise at least a single thread of control – even a simple Java program 

consisting of only a main() method runs as a single thread in the JVM. 

 There are two techniques for creating threads in a Java program.  

 One approach is to create a new class that is derived from the Thread class and to 

override its run() method. 

 An alternative technique is to define a class that implements the Runnable interface. 

The Runnable interface is defined as follows: 

 
 When a class implements Runnable, it must define a run() method. The code implementing 

the run() method is what runs a separate thread. 

 
 Thread creation is performed by creating an object instance of the Thread class and passing 

the constructor a Runnable object. Creating a Thread object does not specifically create 

the new thread; rather, the start() method creates the new thread. Calling the start() method 

for the new object does two things: 

1. It allocates memory and initializes a new thread in the JVM. 

2. It call the run() method, making the thread eligible to be run by the JVM. 

 When the summation program runs, the JVM creates two threads. The first is the parent 

thread, which starts execution in the main() method. The second thread is created when 

the start() method on the Thread object is invoked.  

 This child thread begins execution in the run() method of the Summation class. After 

outputting the value of the summation, this thread terminates when it exits from its run() 

method. 

 The parent thread wait for the summation threads using the join() method to finish before 

proceeding. If the parent must wait for several threads to finish, the join() method can be 

enclosed in a for loop.  

5. Threading Issues 

5.1. The fork() and exec() System Calls 

 The fork() system call is used to create a separate, duplicate process. The semantics of the 

fork() and exec() system calls change in a multithread program. 

 Does fork() duplicate only the calling thread or all threads? 

 Some UNIX systems have chosen to have two versions of fork(), one that duplicates all 

threads and another duplicates only the thread that invoked the fork() system call. 

 The exec() system call typically works as normal. If a thread invokes the exec() system call, 

the program specified in the parameter to exec() will replace the entire process – including all 

threads.  

5.2. Signal Handling 

 A signal is used in UNIX systems to notify a process that a particular even has occurred.  
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 A signal may be received synchronously or asynchronously, depending on the source of and 

the reason for the event being signaled. 

 Examples of synchronous signal include illegal memory access and division by 0. If a running 

program performs either of these actions, a signal is generated. 

 Examples of asynchronous signals include terminating a process with specific key strokes 

and having a timer expire. 

 A signal handler is used to process signals 

1. Signal is generated by particular event 

2. Signal is delivered to a process 

3. Signal is handled by one of two signal handlers: 

 Default 

 user-defined 

 Every signal has default handler that kernel runs when handling that signal. This default 

action can overridden by a user-defined signal handler that is called to handle the signal. 

 Handling signals in single-threaded programs is straight forward: signals are always delivered 

to a process. 

 Where should a signal be delivered for multi-threaded?  

 Deliver the signal to the thread to which the signal applies 

 Deliver the signal to every thread in the process 

 Deliver the signal to certain threads in the process 

 Assign a specific thread to receive all signals for the process 

 The standard UNIX function for delivering a signal is 

kill(pid_t pid, int signal) 

The function specifies the process (pid) to which a particular signal(signal) is to be delivered. 

 POSIX Pthreads provide the following function, which allows a signal to be delivered to a 

specific thread(tid): 

Pthread.kill(pthread_t tid, int signal) 

5.3. Thread Cancellation 

 Thread cancellation involves terminating a thread before it has completed. For example, if 

multiple threads are concurrently searching through a database and one thread returns the 

result, the remaining threads might be canceled.  

 A thread that is to be canceled is often referred to as the target thread. 

 Cancellation of a target thread may occur in two different scenarios: 

 Asynchronous cancellation: One thread immediately terminates the target thread. 

 Deffered cancellation: The target thread periodically checks whether it should terminate, 

allowing it an opportunity to terminate itself in an orderly fashion. 

 The difficulty with cancellation occurs in situations where resources have been allocated to a 

canceled thread or where a thread is canceled while in the midst of updating data it is sharing 

with other threads. 

 In Pthreads, thread cancelation is initiated using the pthread_cancel() function. The identifier 

of the target thread is passed as a parameter to the function. The following code illustrates 

creating and then cancelling a thread: 
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 Invoking thread cancellation requests cancellation, but actual cancellation depends on thread 

state. Pthreads supports three cancellation modes. 

 

 A thread may set its cancellation state and type using an API.  

 Pthreads allow threads to disable or enable cancellation. If thread has cancellation disabled, 

cancellation remains pending until thread enables it 

 The default cancellation type is deferred cancellation. Here, cancellation occurs only when a 

thread reaches a cancellation point. 

 One technique for establishing a cancellation point is to invoke the pthread_testcancel() 

function. If a cancellation request is found to be pending, a function known as cleanup 

handler is invoked. This function allows any resources a thread may have acquired to be 

released before the thread is terminated. 

 On Linux systems, thread cancellation is handled through signals 
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