
Exception Handling
Meera is flying to NewYork

What are these?

This example demonstrates how you have to think in advance the many
possibilities of mishaps that can occur and what are the preventive
measures that can be taken.

Exception Handling

Similarly, when we write programs as part of an application, we may have
to visualize the challenges that can disrupt the normal flow of execution of
the code.

Once we know what are the different situations that can disrupt the flow
of execution, we can take preventive measures to overcome these
disruptions.

In java, this mechanism comes in the form of Exception Handling.

What is Exception?

 An exception is an event that occurs during the execution of a program
that disrupts the normal flow of instructions

 The ability of a program to intercept run-time errors, take corrective
measures and continue execution is referred to as exception handling
 Example
 Attempting to access a file that does not exist
 Inserting an element into an array at a position that is

not in its bounds

 Performing some mathematicaloperation that is not permitted

 Declaring an array using negative values

Types of Exception

Throwable

Error Exception

Checked
Exception

Parent Class

Out of
programmer’s hand
Ex: Out of memory

Can be handled by the
programmer

Unchecked
Exception

Run time Exception
Ex: NullPointerException

Compiler force the
programmer to handle

Exception
Ex: SQLException

Errors
• Error is not considered as an Exception

• Errors are problems that arise beyond the control of the programmer
or the user

• A programmer can rarely do anything about an Error that occurs
during the execution of a program

• This is the precise reason Errors are typically ignored in the code

• Errors are also ignored by the compiler

• Ex : Stack Overflow

Try it

public class Tester {

public static void recursivePrint(int num) {
System.out.println("Number: " + num);

if(num == 0) return; else
recursivePrint(++num);
}

public static void main(String[] args) {
Tester.recursivePrint(1);

}
}

Checked Exception
• A checked exception is an exception that usually happens due to user

error, or it is an error situation that cannot be foreseen by the
programmer

• A checked exception must be handled - Non compliance of this rule
results in a compilation error

Ex: FileNotFoundException

If you try to open a file using

FileInputStream fx = new FileInputStream(“A1.txt”);

• During execution, the system will throw a FileNotFoundException, if
the file A1.txt is not located, which may be beyond the control of a
programmer.

Try it

import java.io.*;
class Main

{
public static void main(String args[])
{

FileInputStream fx = new FileInputStream("A1.txt");
}

}

Main.java:6: error: unreported exception FileNotFoundException; must be caught or declared to
be thrown

FileInputStream fx = new FileInputStream("A1.txt");
^

1 error

UnChecked Exception
 An unchecked exception is an exception, which could have been

avoided by the programmer

 If there is any chance of an unchecked exception occurring in the
code, it is ignored during compilation

 Example

• ArithmeticException

• NumberFormatException

• NullPointerException

• ClassCastException

Try it

class Demo

{

public static void main(String args[])

{

int x = 0;

int y = 50/x;

System.out.println("y = " +y);

}

}

Exception in thread "main" java.lang.ArithmeticException: / by zero
at Demo.main(Demo.java:3)

Exception Handling Techniques
 There are several built-in exception classes that are used to handle

the very fundamental errors that may occur in your programs

 You can create your own exceptions also by extending the Exception
class. These are called user-defined exceptions, and will be used in
situations that are unique to your applications.

 Java’s exception handling is managed using the following keywords:

 try, catch,

 throw,

 throws

 finally.

Try Catch Block
• Any part of the code that can generate an error should be put in the try

block.

• Any error should be handled in the catch block defined by the catch
clause. This block is also called the catch block, or the exception
handler.

• The corrective action to handle the exception should be put in the catch
block.

try {
// block of code to monitor for errors
// the code you think can raise an exception
}
catch (ExceptionType1 exOb) {
// exception handler for ExceptionType1
}

Try it
class Demo
{

public static void main(String args[])
{
try{

int x = 0;
int y = 50/x;
System.out.println("y = " +y);

}
catch (ArithmeticException e){

System.out.println("Division by zero.");
}

System.out.println("After catch statement.");
}

}

 What will be the result, if we try to compile and execute the following
code as

java Ex1 Wipro Bangalore

class Ex1
{
public static void main(String[] xyz)
{
for(int i=0;i<=xyz.length;i++)
System.out.println(xyz[i]);

System.out.println("Thank you");
}

}

Quiz

class Ex1
{

public static void main(String[] xyz)
{

for(int i=0;i<=xyz.length;i++)
{

try{
System.out.println(xyz[i]);
}catch(ArrayIndexOutOfBoundsException ar) {
System.out.println("Array Out of Bounds Error : Rectify");

}
}

System.out.println("Thank you");
}

}

Quiz

class Ex1
{

public static void main(String args[])
{

int x=100;
int y=0;
int z=x/y;
System.out.println(args[1]);

}
}

Java Ex1

Quiz

Multiple Try Catch Block
• At a time only one exception occurs and at a time only one catch block is

executed.
• All catch blocks must be ordered from most specific to most general, i.e.

catch for ArithmeticException must come before catch for Exception.

class Ex1
{

public static void main(String args[])
{

try{
int x=100;
int y=0;
int z=x/y;
System.out.println(args[1]);

}catch(Exception e)
{

System.out.println("Ooooopssss");
}

}
}

Quiz

Nested Try Catch Block
 The try statement can be nested

 If an inner try statement does not have a
catch handler for a particular exception,
the outer block’s catch handler will handle
the exception

 This continues until one of the catch
statement succeeds, or until all of the
nested try statements are exhausted

 If no catch statement matches, then the
Java runtime system will handle the
exception

try
{

statement 1;
statement 2;
try
{

statement 1;
statement 2;

}
catch(Exception e)
{
}

}
catch(Exception e)
{
}

throws
• The Java throws keyword is used to declare an exception.

• It gives an information to the programmer that there may occur an
exception.

• So, it is better for the programmer to provide the exception handling
code so that the normal flow of the program can be maintained.

• Exception Handling is mainly used to handle the checked exceptions.

return_type method_name() throws exception_class_name{
//method code
}

Try it

import java.io.*;
class Main

{
public static void main(String args[])
{

FileInputStream fx = new FileInputStream("A1.txt");
}

}

Main.java:6: error: unreported exception FileNotFoundException; must be caught or declared to
be thrown

FileInputStream fx = new FileInputStream("A1.txt");
^

1 error

Try it

import java.io.*;
class Main

{
public static void main(String args[]) throws FileNotFoundException
{

FileInputStream fx = new FileInputStream("A1.txt");
}

}

Finally block
• Java finally block is a block used to

execute important code such as
closing the connection, etc.

• Java finally block is always executed
whether an exception is handled or
not. Therefore, it contains all the
necessary statements that need to
be printed regardless of the
exception occurs or not.

• The finally block follows the try-
catch block.

Try it
class TestFinallyBlock

{
public static void main(String args[])
{

try{
int a=25/5;
System.out.println("Value of a is" +a);

}catch(NullPointerException e){System.out.println("Null ");}
finally

{
System.out.println("Finally Block");

}
System.out.println("Rest of Prog");

}
}

Try it
class TestFinallyBlock

{
public static void main(String args[])
{

try{
int a=25/0;
System.out.println("Value of a is" +a);

}catch(NullPointerException e){System.out.println("Null ");}
finally

{
System.out.println("Finally Block");

}
System.out.println("Rest of Prog");

}
}

Try it
class TestFinallyBlock

{
public static void main(String args[])
{

try{
int a=25/0;
System.out.println("Value of a is" +a);

}catch(ArithmeticException e){System.out.println("Null ");}
finally

{
System.out.println("Finally Block");

}
System.out.println("Rest of Prog");

}
}

Throw keyword
• The Java throw keyword is used to throw an exception explicitly.

• We specify the exception object which is to be thrown. The Exception
has some message with it that provides the error description. These
exceptions may be related to user inputs, server, etc.

• We can throw either checked or unchecked exceptions in Java by throw
keyword. It is mainly used to throw a custom exception.

• The syntax of the Java throw keyword is given below.

throw new exception_class("error message");

Try it

class TestFinallyBlock
{

public static void main(String args[])
{

int a=Integer.parseInt(args[0]);
if(a<18)

throw new ArithmeticException(" Age is less than 18");
System.out.println("Age above 18");

}
}

Throw vs Throws
Throw throws

Java throw keyword is used throw an exception
explicitly in the code, inside the function or the
block of code.

Java throws keyword is used in the method
signature to declare an exception which might
be thrown by the function while the execution of
the code.

Type of exception Using throw keyword, we can
only propagate unchecked exception i.e., the
checked exception cannot be propagated using
throw only.

Using throws keyword, we can declare both
checked and unchecked exceptions. However,
the throws keyword can be used to propagate
checked exceptions only.

The throw keyword is followed by an instance of
Exception to be thrown.

The throws keyword is followed by class names
of Exceptions to be thrown.

throw is used within the method. throws is used with the method signature.

We are allowed to throw only one exception at a
time i.e. we cannot throw multiple exceptions.

We can declare multiple exceptions using
throws keyword that can be thrown by the
method. For example, main() throws
IOException, SQLException.

Custom Exceptions

• Java exceptions cover almost all the general type of exceptions that
may occur in the programming. However, we sometimes need to
create custom exceptions.

• Following are few of the reasons to use custom exceptions:
1. To catch and provide specific treatment to a subset of existing Java

exceptions.
2. Business logic exceptions: These are the exceptions related to

business logic and workflow. It is useful for the application users
or the developers to understand the exact problem.

In order to create custom exception, we need to extend Exception
class that belongs to java.lang package.

Try it

class ageException extends Exception
{

ageException(String str)
{

System.out.println(str);
}

ageException()
{

System.out.println("Age is less than 18");
}

}

Try it

class TestFinallyBlock
{

public static void main(String args[])
{

int a=Integer.parseInt(args[0]);
try{
if(a<10)

throw new ageException("Age is too Less");
if(a<18)

throw new ageException();
}catch(ageException e)

{System.out.println("Exception Handled");}
System.out.println("Age above 18");

}
}

DIY
Problem statement:

Get the input String from user and parse it to integer, if it is not a number it will throw

number format exception Catch it and print "Entered input is not a valid format for an

integer." or else print the square of that number. (Refer Sample Input and Output).

Sample input and output 1:

Enter an integer: 12

The square value is 144

The work has been done successfully

Sample input and output 2:

Enter an integer: Java

Entered input is not a valid format for an integer.

DIY
Write a program that takes as input the size of the array and the elements in the array.

The program then asks the user to enter a particular index and prints the element at that

index.

This program may generate Array Index Out Of Bounds Exception. Use exception handling

mechanisms to handle this exception. In the catch block, print the class name of the

exception thrown.

Sample Input and Output:

Enter the number of elements in the array 3

Enter the elements in the array

20 90 4

Enter the index of the array element you want to access

6

java.lang.ArrayIndexOutOfBoundsException

DIY

Write a class MathOperation which accepts integers from command line. Create an array

using these parameters. Loop through the array and obtain the sum and average of all the

elements.

Display the result.

Check for various exceptions that may arise like ArithmeticException,

NumberFormatException, and so on.

For example: The class would be invoked as follows:

C:>java MathOperation 1900, 4560, 0, 32500

DIY

Write a Program to take care of Number Format Exception if user enters

values other than integer for calculating average marks of 2 students. The

name of the students and marks in 3 subjects are taken from the user while

executing the program.

In the same Program write your own Exception classes to take care of
Negative values and values out of range (i.e. other than in the range of 0-
100)

DIY
A student portal provides user to register their profile. During registration the system needs to

validate the user should be located in India. If not the system should throw an exception.

Step 1: Create a user defined exception class named “InvalidCountryException”.

Step 2: Overload the respective constructors.

Step 3: Create a main class “UserRegistration”, add the following method,

registerUser– The parameter are String username,String userCountry and add the following logic,

• if userCountry is not equal to “India” throw a InvalidCountryException with the message “User

Outside India cannot be registered”

• if userCountry is equal to “India”, print the message “User registration done successfully”

Invoke the method registerUser from the main method with the data specified and see how the

program behaves,

Name Country Expected Output

Mickey US InvalidCountryException should be thrown.

The message should be “User Outside India cannot be registered”

DIY
Write a program to accept name and age of a person from the command

prompt(passed as arguments when you execute the class) and ensure that

the age entered is >=18 and < 60.

Display proper error messages.

The program must exit gracefully after displaying the error message in

case the arguments passed are not proper. (Hint : Create a user defined

exception class for handling errors.)

Java packages
• package: A collection of related classes.

• Can also "contain" sub-packages.
• Sub-packages can have similar names,

but are not actually contained inside.
• java.awt does not contain java.awt.event

• Uses of Java packages:
• group related classes together
• as a namespace to avoid name collisions
• provide a layer of access / protection
• keep pieces of a project down to a manageable size

Packages and directories
• package  directory (folder)
• class  file

• A class named D in package a.b.c should reside in this file:

a/b/c/D.class

• (relative to the root of your project)

• The "root" directory of the package hierarchy is determined
by your class path or the directory from which java was
run.

Classpath
• class path: The location(s) in which Java looks for class files.

• Can include:
• the current "working directory" from which you ran javac / java
• other folders
• JAR archives
• URLs
• ...

• Can set class path manually when running java at command
line:

• java -cp /home/stepp/libs:/foo/bar/jbl MyClass

A package declaration
package name;

public class name { ...

Example:
package pacman.model;

public class Ghost extends Sprite {
...

}

• File Sprite.java should go in folder pacman/model .

Importing a package
import packageName.*; // all classes

Example:
package pacman.gui;
import pacman.model.*;

public class PacManGui {
...
Ghost blinky = new Ghost();

}

• PacManGui must import the model package in order to use it.

Importing a class
import packageName.className; // one class

Example:
package pacman.gui;
import pacman.model.Sprite;

public class PacManGui {
Ghost blinky = new Ghost();

}

• Importing single classes has high precedence:
• if you import .*, a same-named class in the current dir will override
• if you import .className, it will not

Static import
import static packageName.className.*;

Example:
import static java.lang.Math.*;

...
double angle = sin(PI / 2) + ln(E * E);

• Static import allows you to refer to the members of another
class without writing that class's name.

• Should be used rarely and only with classes whose contents
are entirely static "utility" code.

Referring to packages
packageName.className

Example:
java.util.Scanner console =

new java.util.Scanner(java.lang.System.in);

• You can use a type from any package without importing it if
you write its full name.

• Sometimes this is useful to disambiguate similar names.
• Example: java.awt.List and java.util.List
• Or, explicitly import one of the classes.

The default package
• Compilation units (files) that do not declare a package are

put into a default, unnamed, package.

• Classes in the default package:
• Cannot be imported
• Cannot be used by classes in other packages

• Many editors discourage the use of the default package.

• Package java.lang is implicitly imported in all programs by
default.

• import java.lang.*;

Package access
• Java provides the following access modifiers:

• public : Visible to all other classes.
• private : Visible only to the current class (and any nested

types).
• protected : Visible to the current class, any of its subclasses,

and any other types within the same package.
• default (package): Visible to the current class and any other types

within the same package.

• To give a member default scope, do not write a modifier:
package pacman.model;
public class Sprite {

int points; // visible to pacman.model.*
String name; // visible to pacman.model.*

Package exercise
• Add packages to the Rock-Paper-Scissors game.

• Create a package for core "model" data.
• Create a package for graphical "view" classes.

• Any general utility code can go into a default package or into
another named utility (util) package.

• Add appropriate package and import statements so that the types
can use each other properly.

• JAR: Java ARchive. A group of Java classes and supporting
files combined into a single file compressed with ZIP format,
and given .JAR extension.

• Advantages of JAR files:
• compressed; quicker download
• just one file; less mess
• can be executable

• The closest you can get to having a .exe
file for your Java application.

JAR Files (yousa likey!)

Creating a JAR archive
• from the command line:

jar -cvf filename.jar files

• Example:
jar -cvf MyProgram.jar *.class *.gif *.jpg

• some IDEs (e.g. Eclipse) can create JARs automatically
• File → Export... → JAR file

Running a JAR
• Running a JAR from the command line:

• java -jar filename.jar

• Most OSes can run JARs directly by double-clicking them:

Making a runnable JAR
• manifest file: Used to create a JAR runnable as a program.

jar -cvmf manifestFile MyAppletJar.jar
mypackage/*.class *.gif

Contents of MANIFEST file:
Main-Class: MainClassName

• Eclipse will automatically generate and insert a proper manifest
file into your JAR if you specify the main-class to use.

Resources inside a JAR
• You can embed external resources inside your JAR:

• images (GIF, JPG, PNG, etc.)
• audio files (WAV, MP3)
• input data files (TXT, DAT, etc.)
• ...

• But code for opening files will look outside your JAR, not
inside it.

• Scanner in = new Scanner(new File("data.txt")); // fail
• ImageIcon icon = new ImageIcon("pony.png"); // fail
• Toolkit.getDefaultToolkit().getImage("cat.jpg"); // fail

Accessing JAR resources
• Every class has an associated .class object with these

methods:
• public URL getResource(String filename)
• public InputStream getResourceAsStream(String name)

• If a class named Examplewants to load resources from
within a JAR, its code to do so should be the following:

• Scanner in = new Scanner(
Example.class.getResourceAsStream("/data.txt"));

• ImageIcon icon = new ImageIcon(
Example.class.getResource("/pony.png"));

• Toolkit.getDefaultToolkit().getImage(
Example.class.getResource("/images/cat.jpg"));

• (Some classes like Scanner read from streams; some like Toolkit read from URLs.)
• NOTE the very important leading / character; without it, you will get a null result

JAR to EXE (JSmooth)
• JSmooth is a free program that

converts JARs into Windows EXE files.
• http://jsmooth.sourceforge.net/
• If the machine does not have Java

installed, your EXE will help the user
to download and install Java.

• A bit of a hack; not generally needed.

• Using JSmooth:
• choose Skeleton → Windowed Wrapper
• name your .exe under Executable → Executable Binary
• browse to your .jar under ApplicaƟon → Embedded JAR
• select the main class under ApplicaƟon → Main class

Streams and File I/O

Objectives

• become familiar with the concept of an I/O
stream

• understand the difference between binary files
and text files

• learn how to save data in a file

• learn how to read data from a file

Outline

• Overview of Streams and File I/O

• Text-File I/O

• Using the File Class

• Basic Binary-File I/O

• Object I/O with Object Streams

• (optional) Graphics Supplement

Objectives, cont.

• learn how use the classes ObjectOutputStream
and ObjectInputStream to read and write class
objects with binary files

I/O Overview

• I/O = Input/Output

• In this context it is input to and output from programs

• Input can be from keyboard or a file

• Output can be to display (screen) or a file

• Advantages of file I/O
• permanent copy
• output from one program can be input to another
• input can be automated (rather than entered manually)

Note: Since the sections on text file I/O and binary file I/O have
some similar information, some duplicate (or nearly duplicate)
slides are included.

Streams

• Stream: an object that either delivers data to its destination (screen, file, etc.) or that takes data
from a source (keyboard, file, etc.)

• it acts as a buffer between the data source and destination

• Input stream: a stream that provides input to a program
• System.in is an input stream

• Output stream: a stream that accepts output from a program
• System.out is an output stream

• A stream connects a program to an I/O object
• System.out connects a program to the screen
• System.in connects a program to the keyboard

Binary Versus Text Files
• All data and programs are ultimately just zeros and ones

• each digit can have one of two values, hence binary
• bit is one binary digit
• byte is a group of eight bits

• Text files: the bits represent printable characters
• one byte per character for ASCII, the most common code
• for example, Java source files are text files
• so is any file created with a "text editor"

• Binary files: the bits represent other types of encoded information, such as
executable instructions or numeric data

• these files are easily read by the computer but not humans
• they are not "printable" files

• actually, you can print them, but they will be unintelligible
• "printable" means "easily readable by humans when printed"

Java: Text Versus Binary Files
• Text files are more readable by humans

• Binary files are more efficient
• computers read and write binary files more easily than text

• Java binary files are portable
• they can be used by Java on different machines
• Reading and writing binary files is normally done by a program
• text files are used only to communicate with humans

Java Text Files

• Source files

• Occasionally input files

• Occasionally output files

Java Binary Files

• Executable files (created by
compiling source files)

• Usually input files

• Usually output files

Text Files vs. Binary Files

• Number: 127 (decimal)
• Text file

• Three bytes: “1”, “2”, “7”
• ASCII (decimal): 49, 50, 55
• ASCII (octal): 61, 62, 67
• ASCII (binary): 00110001, 00110010, 00110111

• Binary file:
• One byte (byte): 01111110
• Two bytes (short): 00000000 01111110
• Four bytes (int): 00000000 00000000 00000000 01111110

Text file: an example
[unix: od –w8 –bc <file>]
[http://www.muquit.com/muquit/software/hod/hod.html for a Windows tool]

127 smiley

faces

0000000 061 062 067 011 163 155 151 154

1 2 7 \t s m i l

0000010 145 171 012 146 141 143 145 163

e y \n f a c e s

0000020 012

\n

Binary file: an example [a .class file]

0000000 312 376 272 276 000 000 000 061

312 376 272 276 \0 \0 \0 1

0000010 000 164 012 000 051 000 062 007

\0 t \n \0) \0 2 \a

0000020 000 063 007 000 064 010 000 065

\0 3 \a \0 4 \b \0 5

0000030 012 000 003 000 066 012 000 002

\n \0 003 \0 6 \n \0 002

...

0000630 000 145 000 146 001 000 027 152

\0 e \0 f 001 \0 027 j

0000640 141 166 141 057 154 141 156 147

a v a / l a n g

0000650 057 123 164 162 151 156 147 102

/ S t r i n g B

0000660 165 151 154 144 145 162 014 000

u i l d e r \f \0

Text File I/O
• Important classes for text file output (to the file)

• PrintWriter
• FileOutputStream [or FileWriter]

• Important classes for text file input (from the file):
• BufferedReader
• FileReader

• FileOutputStream and FileReader take file names as arguments.

• PrintWriter and BufferedReader provide useful methods for easier
writing and reading.

• Usually need a combination of two classes

• To use these classes your program needs a line like the following:
import java.io.*;

Buffering

• Not buffered: each byte is read/written from/to disk as soon as possible
• “little” delay for each byte
• A disk operation per byte---higher overhead

• Buffered: reading/writing in “chunks”
• Some delay for some bytes

• Assume 16-byte buffers
• Reading: access the first 4 bytes, need to wait for all 16 bytes are read from disk to

memory
• Writing: save the first 4 bytes, need to wait for all 16 bytes before writing from memory

to disk
• A disk operation per a buffer of bytes---lower overhead

Every File Has Two Names

1.the stream name used by Java
• outputStream in the example

2.the name used by the operating system
• out.txt in the example

Text File Output
• To open a text file for output: connect a text file to a stream for writing

PrintWriter outputStream =
new PrintWriter(new FileOutputStream("out.txt"));

• Similar to the long way:

FileOutputStream s = new FileOutputStream("out.txt");

PrintWriter outputStream = new PrintWriter(s);

• Goal: create a PrintWriter object
• which uses FileOutputStream to open a text file

• FileOutputStream “connects” PrintWriter to a text file.

Output File Streams

PrintWriter FileOutputStream

DiskMemory

smileyOutStream smiley.txt

PrintWriter smileyOutStream = new PrintWriter(new FileOutputStream(“smiley.txt”));

Methods for PrintWriter

• Similar to methods for System.out

• println

outputStream.println(count + " " + line);

• print

• format

• flush: write buffered output to disk

• close: close the PrintWriter stream (and file)

TextFileOutputDemo
Part 1

public static void main(String[] args)

{

PrintWriter outputStream = null;

try

{

outputStream =

new PrintWriter(new FileOutputStream("out.txt"));

}

catch(FileNotFoundException e)

{

System.out.println("Error opening the file out.txt. “

+ e.getMessage());

System.exit(0);

}

A try-block is a block:
outputStream would
not be accessible to the
rest of the method if it
were declared inside the
try-block

Creating a file can cause the
FileNotFound-Exception if
the new file cannot be made.

Opening the file

TextFileOutputDemo
Part 2
System.out.println("Enter three lines of text:");

String line = null;

int count;

for (count = 1; count <= 3; count++)

{

line = keyboard.nextLine();

outputStream.println(count + " " + line);

}

outputStream.close();

System.out.println("... written to out.txt.");

}
The println method is used with two different
streams: outputStream and System.out

Closing the file

Writing to the file

Gotcha: Overwriting a File

• Opening an output file creates an empty file

• Opening an output file creates a new file if it does not already exist

• Opening an output file that already exists eliminates the old file and creates a new, empty one
• data in the original file is lost

• To see how to check for existence of a file, see the section of the text that discusses the File
class (later slides).

Java Tip: Appending to a Text File

• To add/append to a file instead of replacing it, use a different constructor
for FileOutputStream:

outputStream =

new PrintWriter(new FileOutputStream("out.txt", true));

• Second parameter: append to the end of the file if it exists?

• Sample code for letting user tell whether to replace or append:

System.out.println("A for append or N for new file:");
char ans = keyboard.next().charAt(0);
boolean append = (ans == 'A' || ans == 'a');
outputStream = new PrintWriter(

new FileOutputStream("out.txt", append));

true if user
enters 'A'

Closing a File
• An output file should be closed when you are done writing

to it (and an input file should be closed when you are done
reading from it).

• Use the close method of the class PrintWriter
(BufferedReader also has a close method).

• For example, to close the file opened in the previous
example:

outputStream.close();
• If a program ends normally it will close any files that are

open.

FAQ: Why Bother to Close a File?

If a program automatically closes files when it ends normally, why close
them with explicit calls to close?

Two reasons:

1. To make sure it is closed if a program ends abnormally (it could get
damaged if it is left open).

2. A file opened for writing must be closed before it can be opened for
reading.

• Although Java does have a class that opens a file for both
reading and writing, it is not used in this text.

Text File Input
• To open a text file for input: connect a text file to a stream for reading

• Goal: a BufferedReader object,
• which uses FileReader to open a text file

• FileReader “connects” BufferedReader to the text file

• For example:
BufferedReader smileyInStream =

new BufferedReader(new FileReader(“smiley.txt"));

• Similarly, the long way:
FileReader s = new FileReader(“smiley.txt");
BufferedReader smileyInStream = new
BufferedReader(s);

Input File Streams

BufferedReader FileReader

DiskMemory

smileyInStream smiley.txt

BufferedReader smileyInStream = new BufferedReader(new FileReader(“smiley.txt”));

Methods for BufferedReader

• readLine: read a line into a String
• no methods to read numbers directly, so read numbers as Strings

and then convert them (StringTokenizer later)
• read: read a char at a time
• close: close BufferedReader stream

Exception Handling with File I/O
Catching IOExceptions

• IOException is a predefined class

• File I/O might throw an IOException

• catch the exception in a catch block that at least prints an error message and
ends the program

• FileNotFoundException is derived from IOException
• therefor any catch block that catches IOExceptions also catches
FileNotFoundExceptions

• put the more specific one first (the derived one) so it catches specifically
file-not-found exceptions

• then you will know that an I/O error is something other than file-not-
found

Example:
Reading a File
Name from the
Keyboard

public static void main(String[] args)
 {
 String fileName = null; // outside try block, can be used in catch
 try
 { Scanner keyboard = new Scanner(System.in);
 System.out.println("Enter file name:");
 fileName = keyboard.next();
 BufferedReader inputStream =
 new BufferedReader(new FileReader(fileName));
 String line = null;
 line = inputStream.readLine();
 System.out.println("The first line in " + filename + " is:");
 System.out.println(line);
 // . . . code for reading second line not shown here . . .
 inputStream.close();
 }
 catch(FileNotFoundException e)
 {
 System.out.println("File " + filename + " not found.");
 }
 catch(IOException e)
 {
 System.out.println("Error reading from file " + fileName);
 }
 }

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 84

reading a file name
from the keyboard

closing the file

using the file name
read from the
keyboard

reading data
from the file

Exception.getMessage()

try

{

…

}

catch (FileNotFoundException e)

{

System.out.println(filename + “ not found”);

System.out.println(“Exception: “ +

e.getMessage());

System.exit(-1);

}

Reading Words in a String:
Using StringTokenizer Class
• There are BufferedReadermethods to read a line and a character, but not just a single word

• StringTokenizer can be used to parse a line into words
• import java.util.*
• some of its useful methods are shown in the text

• e.g. test if there are more tokens
• you can specify delimiters (the character or characters that separate words)

• the default delimiters are "white space" (space, tab, and newline)

Example: StringTokenizer
• Display the words separated by any of the following characters: space,

new line (\n), period (.) or comma (,).

String inputLine = keyboard.nextLine();
StringTokenizer wordFinder =

new StringTokenizer(inputLine, " \n.,");
//the second argument is a string of the 4 delimiters
while(wordFinder.hasMoreTokens())
{

System.out.println(wordFinder.nextToken());
}

Question
2b
or
!tooBee

Entering "Question,2b.or !tooBee."
gives this output:

Testing for End of File in a Text File

• When readLine tries to read beyond the end of a text file it returns
the special value null

• so you can test for null to stop processing a text file

• read returns -1 when it tries to read beyond the end of a text file
• the int value of all ordinary characters is nonnegative

• Neither of these two methods (read and readLine) will throw an
EOFException.

int count = 0;
String line = inputStream.readLine();
while (line != null)
{
 count++;
 outputStream.println(count + " " + line);
 line = inputStream.readLine();
}

Chapter 9 Java: an Introduction to Computer Science & Programming - Walter Savitch 89

Excerpt from TextEOFDemo

Example: Using Null to
Test for End-of-File in a Text File

When using
readLine
test for null

When using read test for -1

File I/O example

• http://www.cs.fit.edu/~pkc/classes/cse1001/FileIO/FileIO.java

Using Path Names
• Path name—gives name of file and tells which directory the file is in

• Relative path name—gives the path starting with the directory that
the program is in

• Typical UNIX path name:

/user/smith/home.work/java/FileClassDemo.java

• Typical Windows path name:

D:\Work\Java\Programs\FileClassDemo.java

• When a backslash is used in a quoted string it must be written as two
backslashes since backslash is the escape character:

"D:\\Work\\Java\\Programs\\FileClassDemo.java"

• Java will accept path names in UNIX or Windows format, regardless of
which operating system it is actually running on.

File Class [java.io]
• Acts like a wrapper class for file names
• A file name like "numbers.txt" has only String properties
• File has some very useful methods

• exists: tests if a file already exists
• canRead: tests if the OS will let you read a file
• canWrite: tests if the OS will let you write to a file
• delete: deletes the file, returns true if successful
• length: returns the number of bytes in the file
• getName: returns file name, excluding the preceding path
• getPath: returns the path name—the full name

File numFile = new File(“numbers.txt”);

if (numFile.exists())

System.out.println(numfile.length());

File Objects and Filenames

• FileInputStream and FileOutputStream have constructors that take a File argument
as well as constructors that take a String argument

PrintWriter smileyOutStream = new PrintWriter(new
FileOutputStream(“smiley.txt”));

File smileyFile = new File(“smiley.txt”);

if (smileyFile.canWrite())

PrintWriter smileyOutStream = new PrintWriter(new
FileOutputStream(smileyFile));

Alternative with Scanner
• Instead of BufferedReader with
FileReader, then StringTokenizer

• Use Scanner with File:

Scanner inFile =

new Scanner(new File(“in.txt”));

• Similar to Scanner with System.in:

Scanner keyboard =

new Scanner(System.in);

Reading in int’s

Scanner inFile = new Scanner(new File(“in.txt"));

int number;

while (inFile.hasInt())

{

number = inFile.nextInt();

// …

}

Reading in lines of characters

Scanner inFile = new Scanner(new File(“in.txt"));

String line;

while (inFile.hasNextLine())

{

line = inFile.nextLine();

// …

}

Multiple types on one line
// Name, id, balance

Scanner inFile = new Scanner(new File(“in.txt"));

while (inFile.hasNext())

{

name = inFile.next();

id = inFile.nextInt();

balance = inFile.nextFloat();

// … new Account(name, id, balance);

}

String line;

while (inFile.hasNextLine())

{

line = inFile.nextLine();

Scanner parseLine = new Scanner(line) // Scanner again!

name = parseLine.next();

id = parseLine.nextInt();

balance = parseLine.nextFloat();

// … new Account(name, id, balance);

}

Multiple types on one line
// Name, id, balance
Scanner inFile = new Scanner(new File(“in.txt"));
String line;
while (inFile.hasNextLine())

{
line = inFile.nextLine();
Account account = new Account(line);

}

public Account(String line) // constructor
{

Scanner accountLine = new Scanner(line);
_name = accountLine.next();
_id = accountLine.nextInt();
_balance = accountLine.nextFloat();

}

BufferedReader vs Scanner
(parsing primitive types)
• Scanner

• nextInt(), nextFloat(),… for parsing types

• BufferedReader
• read(), readLine(), … none for parsing types
• needs StringTokenizer then wrapper class methods like
Integer.parseInt(token)

BufferedReader vs Scanner
(Checking End of File/Stream (EOF))

• BufferedReader
• readLine() returns null
• read() returns -1

• Scanner
• nextLine() throws exception
• needs hasNextLine() to check first
• nextInt(), hasNextInt(), …

BufferedReader inFile = …
line = inFile.readline();
while (line != null)
{
// …
line = inFile.readline();

}

Scanner inFile = …
while (inFile.hasNextLine())
{
line = infile.nextLine();
// …

}

BufferedReader inFile = …

line = inFile.readline();

while (line != null)

{

// …

line = inFile.readline();

}

BufferedReader inFile = …

while ((line = inFile.readline()) != null)

{

// …

}

My suggestion

• Use Scannerwith File
• new Scanner(new File(“in.txt”))

• Use hasNext…() to check for EOF
• while (inFile.hasNext…())

• Use next…() to read
• inFile.next…()

• Simpler and you are familiar with methods for Scanner

My suggestion cont…
• File input

• Scanner inFile =
new Scanner(new File(“in.txt”));

• File output
• PrintWriter outFile =

new PrintWriter(new File(“out.txt”));
• outFile.print(), println(), format(),
flush(), close(), …

• http://www.cs.fit.edu/~pkc/classes/cse1001/FileIO/FileIONew.java

Skipping binary file I/O for now;
if we have time, we’ll come back

Basic Binary File I/O
• Important classes for binary file output (to the file)

• ObjectOutputStream
• FileOutputStream

• Important classes for binary file input (from the file):
• ObjectInputStream
• FileInputStream

• Note that FileOutputStream and FileInputStream are used only
for their constructors, which can take file names as arguments.

• ObjectOutputStream and ObjectInputStream cannot take
file names as arguments for their constructors.

• To use these classes your program needs a line like the following:
import java.io.*;

Java File I/O: Stream Classes
• ObjectInputStream and ObjectOutputStream:

• have methods to either read or write data one byte at a time
• automatically convert numbers and characters into binary

• binary-encoded numeric files (files with numbers) are not
readable by a text editor, but store data more efficiently

• Remember:
• input means data into a program, not the file
• similarly, output means data out of a program, not the file

When Using ObjectOutputStream
to Output Data to Files:

• The output files are binary and can store any of the primitive data
types (int, char, double, etc.) and the String type

• The files created can be read by other Java programs but are not
printable

• The Java I/O library must be imported by including the line:
import java.io.*;

• it contains ObjectOutputStream and other useful class
definitions

• An IOExceptionmight be thrown

Handling IOException

• IOException cannot be ignored
• either handle it with a catch block
• or defer it with a throws-clause

We will put code to open the file and write to it in a try-block and write a catch-block for this
exception :

catch(IOException e)

{

System.out.println("Problem with output...";

}

Opening a New Output File

• The file name is given as a String
• file name rules are determined by your operating system

• Opening an output file takes two steps
1. Create a FileOutputStream object associated with the file name

String
2. Connect the FileOutputStream to an ObjectOutputStream

object
This can be done in one line of code

Example: Opening an Output File
To open a file named numbers.dat:

ObjectOutputStream outputStream =
new ObjectOutputStream(
new FileOutputStream("numbers.dat"));

• The constructor for ObjectOutputStream requires a
FileOutputStream argument

• The constructor for FileOutputStream requires a String argument
• the String argument is the output file name

• The following two statements are equivalent to the single statement above:
FileOutputStream middleman =
new FileOutputStream("numbers.dat");

ObjectOutputStream outputStream =
new ObjectOutputSteam(middleman);

Some ObjectOutputStreamMethods

• You can write data to an output file after it is connected to a stream class
• Use methods defined in ObjectOutputStream

• writeInt(int n)
• writeDouble(double x)
• writeBoolean(boolean b)
• etc.
• See the text for more

• Note that each write method throws IOException
• eventually we will have to write a catch block for it

• Also note that each write method includes the modifier final
• finalmethods cannot be redefined in derived classes

Closing a File
• An Output file should be closed when you are done writing

to it

• Use the close method of the class
ObjectOutputStream

• For example, to close the file opened in the previous
example:

outputStream.close();

• If a program ends normally it will close any files that are
open

Writing a Character to a File:
an Unexpected Little Complexity

• The method writeChar has an annoying property:
• it takes an int, not a char, argument

• But it is easy to fix:
• just cast the character to an int

• For example, to write the character 'A' to the file opened previously:
outputStream.writeChar((int) 'A');

• Or, just use the automatic conversion from char to int

Writing a boolean Value to a File

• boolean values can be either of two values, true or false

• true and false are not just names for the values, they actually are of type
boolean

• For example, to write the boolean value false to the output file:
outputStream.writeBoolean(false);

Writing Strings to a File:
Another Little Unexpected Complexity

• Use the writeUTF method to output a value of type String
• there is no writeStringmethod

• UTF stands for Unicode Text Format
• a special version of Unicode

• Unicode: a text (printable) code that uses 2 bytes per character
• designed to accommodate languages with a different alphabet or no

alphabet (such as Chinese and Japanese)

• ASCII: also a text (printable) code, but it uses just 1 byte per character
• the most common code for English and languages with a similar

alphabet

• UTF is a modification of Unicode that uses just one byte for ASCII characters
• allows other languages without sacrificing efficiency for ASCII files

When Using ObjectInputStream
to Read Data from Files:
• Input files are binary and contain any of the primitive data types (int, char, double, etc.) and

the String type

• The files can be read by Java programs but are not printable

• The Java I/O library must be imported including the line:
import java.io.*;

• it contains ObjectInputStream and other useful class definitions

• An IOExceptionmight be thrown

Opening a New Input File

• Similar to opening an output file, but replace "output" with "input"

• The file name is given as a String
• file name rules are determined by your operating system

• Opening a file takes two steps
1. Creating a FileInputStream object associated with the file name
String

2. Connecting the FileInputStream to an ObjectInputStream
object

• This can be done in one line of code

Example: Opening an Input File
To open a file named numbers.dat:

ObjectInputStream inStream =
new ObjectInputStream (new
FileInputStream("numbers.dat"));

• The constructor for ObjectInputStream requires a
FileInputStream argument

• The constructor for FileInputStream requires a String argument
• the String argument is the input file name

• The following two statements are equivalent to the statement at the top of
this slide:
FileInputStream middleman =
new FileInputStream("numbers.dat");

ObjectInputStream inputStream =
new ObjectInputStream (middleman);

Some ObjectInputStream Methods

• For every output file method there is a corresponding input file method

• You can read data from an input file after it is connected to a stream class
• Use methods defined in ObjectInputStream

• readInt()
• readDouble()
• readBoolean()
• etc.
• See the text for more

• Note that each write method throws IOException

• Also note that each write method includes the modifier final

Input File Exceptions

• A FileNotFoundException is thrown if the file is not found
when an attempt is made to open a file

• Each read method throws IOException
• we still have to write a catch block for it

• If a read goes beyond the end of the file an EOFException is
thrown

Avoiding Common ObjectInputStream File Errors

There is no error message (or exception)
if you read the wrong data type!

• Input files can contain a mix of data types
• it is up to the programmer to know their order and use

the correct read method
• ObjectInputStreamworks with binary, not text files
• As with an output file, close the input file when you are done

with it

Common Methods
to Test for the End of an Input File

• A common programming situation is to read data from an input file but not know
how much data the file contains

• In these situations you need to check for the end of the file

• There are three common ways to test for the end of a file:
1. Put a sentinel value at the end of the file and test for it.
2. Throw and catch an end-of-file exception.
3. Test for a special character that signals the end of the file (text files often

have such a character).

The EOFException Class

• Many (but not all) methods that read from a file throw an end-of-file
exception (EOFException) when they try to read beyond the file

• all the ObjectInputStreammethods in Display 9.3 do throw it

• The end-of-file exception can be used in an "infinite" (while(true))
loop that reads and processes data from the file

• the loop terminates when an EOFException is thrown

• The program is written to continue normally after the EOFException has
been caught

Using
EOFException

 try
 {
 ObjectInputStream inputStream =
 new ObjectInputStream(new FileInputStream("numbers.dat"));
 int n;

 System.out.println("Reading ALL the integers");
 System.out.println("in the file numbers.dat.");
 try
 {
 while (true)
 {
 n = inputStream.readInt();
 System.out.println(n);
 }
 }
 catch(EOFException e)
 {
 System.out.println("End of reading from file.");
 }
 inputStream.close();
 }
 catch(FileNotFoundException e)
 {
 System.out.println("Cannot find file numbers.dat.");
 }
 catch(IOException e)
 {
 System.out.println("Problem with input from file numbers.dat.");
 }

Chapter 9 Java: an Introduction to Computer Science & Programming - Walter Savitch 125

main method from
EOFExceptionDemo

Intentional "infinite" loop to
process data from input file

Note order of catch blocks:
the most specific is first

and the most general last

Loop exits when end-of-
file exception is thrown

Processing continues
after EOFException:
the input file is closed

Binary I/O of Class Objects
• read and write class objects in binary file

• class must be serializable
• import java.io.*
• implement Serializable interface
• add implements Serializable to heading of class definition

• methods used:
to write object to file:
writeObject method in
ObjectOutputStream

to read object from file:
readObject method in
ObjectInputStream

public class Species implements Serializable

outputStream = new ObjectOutputStream(

new FileOutputStream("species.records"));

...

Species oneRecord =

new Species("Calif. Condor, 27, 0.02);

...

outputStream.writeObject(oneRecord);

inputStream = new ObjectInputStream(

new FileInputStream("species.records"));

...

Species readOne = null;

...

readOne = (Species)inputStream.readObject(oneRecord);

readObject returns a reference to
type Object so it must be cast to
Species before assigning to readOne

ClassIODemo Excerpts

The Serializable Interface

• Java assigns a serial number to each object written out.
• If the same object is written out more than once, after the first write only the serial number

will be written.
• When an object is read in more than once, then there will be more than one reference to the

same object.

• If a serializable class has class instance variables then they should also be serializable.

• Why aren't all classes made serializable?
• security issues: serial number system can make it easier for programmers to get access to

object data
• doesn't make sense in all cases, e.g., system-dependent data

