ROBOTICS

Open Elective-IV

Course code	20ME2702B	Year	IV	Semester	Ι
Course	Open	Offering	ME	Course Type	Theory
category	Elective-4	Branch		000130 - JPC	
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous		Semester			
Internal	30	End	70	Total Marks	100
Evaluation		Evaluation			

Cours	e Outcomes: Upon successful completion of the course,	the student will be able	to	
	Statement	Skill	Level	Units
CO1	Understand the basic anatomy of robots, actuators, end effectors, robot sensors, programming and applications.	Understand	L2	1,2,3,4,5
CO2	Understand the working principles of robot actuators, end effectors	Understand	L2	2
CO3	Apply robot programming skills	Apply, Modern Tool Usage	L3	3
CO4	Apply knowledge of robot sensors and their applications in industries	Apply	L3	4,5

	(Contrib				comes to rrelatio				0		itcome	5 &	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	3	3												
CO3	3	3	2		2									
CO4	3		2											

	Syllabus	
UNIT	Contents	Mapped COs
Ι	Introduction: Automation and robotics – History of robots -Robot anatomy – classification of robots, major components-robot specifications, selection of robots.	CO1
Π	Robot actuators - Pneumatic, Hydraulic actuators, electric & stepper motors End Effectors - types of end effectors, grippers and tools, Requirements and challenges of end effectors.	CO1, CO2
III	Robot Programming: - Robot programming languages - programming methods - off and on-line programming - Lead through method - Teach pendent method, simple programs.	CO1, CO3
IV	Sensors used in robots: Sensor devices, Types of sensors - contact, position and displacement sensors, Force and torque sensors - Proximity and range sensors - acoustic sensors –slip sensors, Robot vision systems	CO1, CO4

V	Applications of robots: Application of robots in industry - material handling,	CO1,
v	processing operations, assembly, and inspection operations.	CO4

Text books:
1. Mikell P. Groover. Industrial Robotics Technology Programming and Applications,
McGraw Hill Co., Singapore, 1995.
2. Robotic Engineering by Richard D.Klafter, Prentice Hall
Reference books
1. Introduction to Robotics – Saeed B.Niku, Prentice Hall
2. Introduction to Robotics – John J. Craig, Addison Wesley

 E-Resources & other digital Material:

 1.
 http://nptel.ac.in/downloads/112101098/