MECHATRONICS

Open Elective-IV

Statement							Units	
Course Code		20ME2702A	Year	IV	Semester		Ι	
Course Category		Open Elective-4	Offering Branch	ME	Course Type	Th	Theory	
Credits		3	L - T - P	3 - 0 - 0	Prerequisites		electrical ectronics	
Continuous Internal Evaluation		30	Semester End Evaluation	70	Total Marks	1	00	
CO1	Explain	the concepts rela	ted to elements of	of Mechatron	ic systems.	L2	1,2,3,4,5	
CO2	Summarize the construction and working of sensors used in building mechatronic systems.						1	
CO3	Illustrate various types of actuation systems and their components.						2	
CO4	Develop mathematical models using building blocks and make use of these models to find the dynamic response.						3	
CO5	Summarize the construction and working of closed loop controllers, Micro processor and Microcontrollers.						4	
CO6	Illustrat Fuzzy l	f L3	5					

Contribution of Course outcomes towards achievement of Program outcomes &Strength of correlations (High:3, Medium: 2, Low:1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PO11	PO12	PSO1	PSO2
CO1	3								2		2		
CO2	3								2		2		
CO3	3		3						2		2		
CO4	3	3			2				2		2		
CO5	3				2				2		2		
CO6	3				2				2		2		

Syllabus					
UNIT	Contents	Mapped CO			
I	 INTRODUCTION: Definition of Mechatronics, evolution of mechatronics, systems, measurement systems, control systems, mechatronic design process, traditional design and mechatronic design, applications of mechatronic systems, advantages and disadvantages of mechatronic systems. SENSORS: classification of sensors, basic working principles, Velocity sensors – Proximity and Range sensors, ultrasonic sensor, laser interferometer transducer, Hall Effect sensor, inductive proximity switch. Light sensors – Photodiodes, phototransistors, tactile sensor –PVDF tactile sensor, micro-switch and reed switch, Piezoelectric sensors, vision sensor 	CO1 CO2			
II	PNEUMATICAND HYDRAULIC ACTUATION SYSTEMS: Actuation systems,	CO1			
	Pneumatic and Hydraulic systems- constructional details of filter, lubricator, regulator,	CO3			

	direction control valves, pressure control valves, flow control valves, actuators-linear				
	and rotary.				
	ELECTRICAL ACTUATION SYSTEMS: Electrical systems, Mechanical switches,				
	solid state switches, solenoids, DC motors, AC motors, stepper motors. Characteristics				
	of pneumatic, hydraulic, electrical actuators and their limitations.				
	BASIC SYSTEM MODELS: Mathematical models, mechanical system building				
III	blocks, electric system building blocks, fluid system building blocks, thermal system				
111	building blocks.	CO1 CO4			
	DYNAMIC RESPONSES OF SYSTEMS: Transfer function, Modelling dynamic	04			
	systems, first order and second order systems.				
	CLOSED LOOP CONTROLLERS: Classification of control systems, feedback,				
	closed loop and open loop systems, continuous and discrete processes, control modes,				
IV	two step mode, proportional mode, derivative control, integral control, PID controller.				
	MICROPROCESSOR AND MICRO CONTROLLER: Introduction, Architecture of				
	a microprocessor (8085), Architecture of a Micro controller, Difference between				
	microprocessor and a microcontroller.				
	DIGITAL LOGIC: Digital logic, number systems, logic gates, Boolean algebra,				
	Karnaugh maps, application of logic gates, sequential logic, transducer Signal				
	Conditioning and devices for data conversion.				
v	PROGRAMMABLE LOGIC CONTROLLERS :Introduction, basic structure,	CO1			
v	input/output processing, programming, mnemonics, timers, internal relays and counters,	CO6			
	shiftregister, master and jump controls. Data handling, Analog input/output, selection of a PLC.				
	FUZZY LOGIC APPLICATIONS IN MECHATRONICS: Fuzzy logic systems,				
	Fuzzy control, Uses of Fuzzy expert systems.				

Learning Resource

Text books:

- 1. Mechatronics Electronic Control Systems in Mechanical and Electrical Engineering, (3rdedition), by WBolton, Pearson Education Press, 2005.
- 2. Mechatronics System Design, 5thIndian reprint, 2009, by Devdas shetty, Richard A.kolk, PWS Publishing Company

Reference books

- 1. Mechatronics Sou rce Book, by Newton C Braga, Thomson Publications, Chennai.
- 2. Mechatronics, by N. Shanmugam, Anuradha Agencies Publishers.
- 3. Control sensors and actuators, by C. W. Desilva, Prentice Hall.
- 4. Design with Micro processors for Mechanical Engineers, by Stiffler, A. K. McGraw-Hill(1992).

E-Resources & other digital Material:

1. https://onlinecourses.nptel.ac.in/noc22_me54/course