Machine Learning

Course Code	20CS3602	Year	III	Semester	II				
Course Category	PCC	Branch	CSE	Course Type	Theory				
Credits	3	L-T-P	3-0-0	Prerequisites	Linear, algebra, Vectors Statistics and Probability, Data Structures and Algorithms				
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100				

COURSE OUTCOMES						
Upon successful completion of the course, Student will be able to						
CO1	Understand the basic concepts of Machine Learning.	L2				
CO2	Apply Supervised Learning algorithms for solving various problems	L3				
CO3	Apply Unsupervised Learning and Reinforcement learning algorithms for solving various problems.	L3				
CO4	Analyze the given application and use suitable machine learning algorithm	L4				

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)														
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2						1	1							3
CO3	2					1								
CO4		2				1	1		1	1				

Unit No.	SYLLABUS CONTENTS	Mapped CO
I	Introduction: Well Posed Learning Problems, Designing a Learning System, Perspectives and Issues in Machine Learning, Examples of Machine learning Applications.	CO1, CO2
	Decision Tree Learning: Decision Tree Representation, Appropriate Problems for Decision Tree Learning, Decision Tree Learning Algorithm.	
П	Problems for Neilral Network Learning Percentions Willfilaver Networks	CO1,CO2,C O4
Ш	- accuracy Magguring Maggitlar Accuracy Engamble Mathods: Ragging	CO1,CO2,C O4
IV	I NO L OCO WINDH THO HOTO OPO L INDOPINI INCONOPONIO	CO1,CO2. CO4
	Instance Based Learning: k-Nearest Neighbor Learning-Distance- Weighted Nearest Neighbor Algorithm, Case Based Reasoning	
V	Unsupervised Learning: Cluster Analysis Partition Methods Hierarchical	CO1,CO3.C O4

Learning Resources							
Text Book							
1. Machine Learning by Tom M. Mitchell, Indian Edition 2013, McG	raw Hill Education.						
2. Machine Learning Saikat Dutt, Subramanian Chandra	amouli, Amit Kumar						
Das, First							
Edition,2019,Pearson Education							
3. Data Mining Concepts and Techniques, Jiawei Han, Micheline Kam	ber, Jian Pei, Third Edition, 2012.						
References							
1. Introduction to Machine Learning by ETHEM ALPAYDIN, Fourth Edition, Prentice Hall of India,							
MIT Press, 2020.							
2. C Bishop – Pattern Recognition and Machine Learning – Springer,	. C Bishop – Pattern Recognition and Machine Learning – Springer, 2006. Machine Learning,						
Anuradha Srinivasaraghavan, and Vincy Joseph, Kindle Edition, September 2020, WILEY.							
3. Machine Learning in Production: Developing and optimizing Data Science Workflows and							
Applications, Andrew Kelleher, Adam Kelleher, First Edition, 2012, Pearson Education							
4. Introduction to Data Mining, Pearson, Tan,Vip	oin Kumar,Michael						
Steinbach, Ninth							
Impression,2013.							
e-Resources and other Digital Material							
1.https://www.coursera.org/learn/machine-learning							
2.https://nptel.ac.in/courses/106/106106139/							