PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS) INFORMATION TECHNOLOGY

TRASFORM TECHNIQUES, NUMERICAL METHODS AND NUMBER THEORY

Course Code	20BS1404	Year	II	Semester	II	
Course Category	BS	Branch	IT	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	_	
Continuous		Semester	3 0 0	Trerequisites		
Internal		End				
Evaluation	30	Evaluation	70	Total Marks	100	

Course Outcomes						
Upon Successful completion of course, the student will be able to						
CO1	Understand the basic concepts of Transform Techniques, Numerical Methods and Number Theory	L2				
CO2	Determine Laplace and inverse Laplace transforms of given function & Solving the linear differential Equations using Laplace transforms	L3				
CO3	Apply different Numerical methods to solve the problems of numerical integration and ordinary differential equations	L3				
CO4	Estimate the interpolated values, approximate roots and derivatives	L4				

	Contribution of Course Outcomes towards achievement of Program Outcomes Strength of correlations (3-High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1													1	
CO2	3								2	2			1	
CO3	3								2	2			1	
CO4		3											1	

Unit No	Contents	Mapped COs
I	Laplace Transforms: Definition of Laplace Transform, Transforms of elementary functions, properties of Laplace Transforms, Transforms of derivatives, Transforms of integrals, multiplication by t_i^n division by t_i^n theorems/properties without proofs) Application: Evaluation of integrals.	
п	Inverse Laplace transforms: Method of partial fractions, other methods of finding inverse Transform, convolution theorem.(All theorems/properties without proofs) Application: Solving differential equations using Laplace transforms.	CO1, CO2
Ш	Solution of Algebraic and Transcendental Equations: Bisection method, method of false position and Newton-Raphson's method. Finite differences and Interpolation: Relation between the operators, interpolation using Newton's forward and backward difference formulae. Interpolation with unequal intervals: Lagrange's formula. (All theorems/properties without proofs)	CO1, CO3, CO4
IV	Numerical Solution of Ordinary differential equations: Picard's Method, Taylor's Series Method, Euler's Method, modified Euler's Method, Runge-Kutta method of fourth order for solving first order equations. (All theorems/properties without proofs)	CO1, CO3, CO4
V	Basic Concepts in Number Theory: Divisibility and the Division Algorithm, The Euclidean Algorithm, Modular arithmetic, Prime numbers, Fermat's Theorem and Euler's Theorems, Testing for Primality, Chinese Remainder Theorem. (All theorems without proofs)	CO1

Learning Resources

Text Book(s)

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019.
- 2. T.K.V.Iyenger, Krishna Gandhi and others, *Mathematical Methods* by S.Chand.
- 3. *Cryptography and Network Security- Principles and Practice*, William Stallings, Seventh Edition 2017, Pearson

Reference Book(s)

1. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.

e- Resources & other digital material

- 1. https://www.nptel.ac.in/courses/111/107/111107105/
- 2. https://nptel.ac.in/courses/106/105/106105162/
- 3. https://nptel.ac.in/courses/111/106/111106139/
- 4. IT Moodle