MATERIAL TESTING AND CHARACTERIZATION LAB

Course code	20ME3453	Year	II	Semester	II
Course	Professional	Branch	ME	Course Type	Lab
category	Core			71	
Credits	1.5	L-T-P	0-0-3	Prerequisites	-
Continuous		Semester			
Internal	15	End	35	Total Marks	50
Evaluation		Evaluation			

Course outcomes: At the end of the course, the student will be able to

CO's	Statement	Skill	BTL	Experiments
CO1	Apply methods to determine Mechanical	Apply	L3	Material Testing
	properties and Elastic Constants.	Appry		
CO2	Identify the microstructures of different	Analyza	L3	Characterization
	ferrous andnon-ferrous metals.	Analyze		
CO3	Appraise the students with the use of	Analyze	L4	Material Testing
	testing machines.			
CO4	Discuss the effect of cold working, heat	Analyze	L4	Characterization
	treatment, and cooling rates on the			
	properties of steels.			

Course outcomes towards achievement of programme outcomes &Strength of correlations (High:3, Medium:2, Low:1)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1		1		3					3			3	1
CO2	1	2	3	3	3	2	3			3			3	1
CO3	1		1		3					3			3	1
CO4	1	2	3	3	2	2	3			3			3	1

Contents	Mapped CO
1. Determination of Tensile strength, percentage elongation and percentage	
reduction in area of the given Ferrous and non-Ferrous materials.	
2. Determination of Young's modulus of given beam material (Deflection	
Teston beams).	GO1 GO2
3. Determination of modulus of rigidity of circular rod (Torsion Test).	CO1, CO3
4. Determination of Modulus of Rigidity of given Helical spring.	
5. Determination of Hardness Number for given material.	
6. Determination of impact strength of given material.	
Out of the Ten Experiments ANY Six are to be performed	
1. Preparation and study of microstructure of Iron, hypoeutectoid,	
eutectoidand hypereutectoid steels.	
2. Study of microstructure of Cast Iron samples viz. Ductile, Malleable, Grey,	
White Cast Irons.	CO2 CO4
3. Preparation and study of microstructure of Aluminum and its alloy.	CO2, CO4
4. Study of microstructure of Copper and its alloy.	
5. Study and quantification of micro phases in welded samples.	
6. Study of microstructure of various treated and untreated steels.	
7.Study of microstructure of 18/8 steel.	

PVPSIT	Department of Mechanical Engineering	PV
8. Hardness of variou	s treated and untreated steels.	
9. Hardenability of St	eels by Jominy end Quench test.	
Comparison between an	nnealing and normalizing of cold worked mild steel	