PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS) INFORMATION TECHNOLOGY

Data Structures (Common to CSE & IT)

Course Code	20ES1305	Year	II	Semester	I	
Course Category	ES	Branch	IT	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	Programming for Problem Solving	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Course Outcomes						
Upon su	Upon successful completion of the course, the student will be able to					
CO1	Understand the basic concepts of algorithm complexities, recursion and data structures.	L2				
CO2	Apply suitable searching, sorting algorithms for various applications.	L3				
CO3	Apply suitable data structure to solve the problems.	L3				
CO4	Analyze the problem to construct an algorithm using suitable data structure.(Assignment)	L4				

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

	PO1	PO2	PO 3	PO4	PO 5	PO6	PO 7	PO 8	PO 9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	3								2	2		3	3	3
CO3	3								1	1		3	3	3
CO4		3							1	1		3	3	3

	Syllabus							
Unit No	Contents							
I	 Introduction: Algorithm Specification, Time complexity & space complexity and their notations. Recursion: What is Recursion, Why Recursion, Format of a Recursive function, Recursion andmemory, Recursion Vs Iteration, Examples. Sorting and Searching: Searching- Linear and Binary search algorithms. Sorting-Bubble, Insertion, Selection, Merge, Quick sort algorithms. 	CO2						
П	Linked lists: Single linked list, double linked list, circular linked list, and operations on linkedlists.	CO1, CO3, CO4						
III	Stacks: Definition, operations: array implementation, linked list implementation and applications. Queues: Definition, operations: array implementation, linked list implementation and applications, Circular Queue.	CO1, CO3, CO4						
IV	Trees: Introduction- Terminology, representation of trees, binary trees abstract data type, Properties of binary trees, binary tree representation, binary tree traversals In order, preorder, post order, Binary search trees Definition, searching BST, insert into BST, delete from a BST, Height of a BST.	CO1, CO3, CO4						
V	Graphs: The Graph ADT Introduction, definition, graph representation, elementary graph operations BFS, DFS, Minimum Spanning Tree – only: Prim's and Kruskal's MST.							

Learning Resources

Text Books

- 1. Data Structures and Algorithm Analysis in C, Mark Allen Weiss, Second Edition, 2002, Pearson.
- 2. *Introduction to Algorithms*, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Third Edition, 2010, PHI.
- 3. *Data Structures and Algorithms Made Easy* by Narasimha Karumanchi, 2020, CareerMonk Publications.

References

- 1. Fundamental of Data Structures in C, Horowitz, Sahani, Anderson-Freed, Second Edition, 2008, Universities Press.
- 2. Classic Data Structures, Debasis Samantha, Second Edition, 2009, PHI.

e-Resources & other digital material

- 1. http://cse.iitkgp.ac.in/pds/
- 2. http://cmpe.emu.edu.tr/bayram/courses/231/LectureNotesSlides/IQBAL/Lecture% 20Notes
- 3. https://www.geeksforgeeks.org/data-structures/
- 4. https://www.programiz.com/dsa
- 5. https://www.tutorialspoint.com/data_structures_algorithms/index.htm
- 6. https://www.youtube.com/watch?v=zWg7U0OEAoE&list=PLBF3763AF2E1C572F
- 7. https://www.youtube.com/watch?v=S47aSEqm_0I&list=PLgi_V-
- ZKxRKrxgFyOutPJpoLFBaQMOpK-