PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS)

INFORMATION TECHNOLOGY

Engineering Mathematics III (Discrete Mathematical Structures) (Common to CSE & IT)

Course Code	20BS1303	Year	II	Semester	I
Course Category	BS	Branch	IT	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Basic Mathematics
Continuous Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes						
Upon suc	Upon successful completion of the course, the student will be able to					
CO1	Understand the fundamental concepts of discrete mathematical structures	L2				
CO2	Apply Normal forms/Rules of Inference for solving suitable problems.	L3				
CO3	Apply the method of characteristic roots for solving different recurrence relations.	L3				
CO4	Analyze various graph techniques to construct a tree.	L4				

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	2									1				
CO3										1			2	
CO4		3							1	1				

	Syllabus					
Unit No.	Contents					
I	Mathematical Logic: Introduction –Statements and Notations - Connectives (Negation, Conjunction, Disjunction) - Statement formulas and Truth Tables, Conditional and Bi-conditional, Well-Formed Formulas, Tautologies, Equivalence of Formulas, Duality Law, Tautological Implication, Functionally Complete Sets of Connectives, Other Connectives. Normal Forms: Disjunctive Normal Forms (DNF), Conjunctive Normal Forms (CNF), Principal of Disjunctive Normal Forms (PDNF), Principal of ConjunctiveNormal Forms (PCNF).	CO1, CO2				
II	Theory of Inference for Statement Calculus: Validity using Truth Tables-Rules of Inference – Consistency of Premises and Indirect Method Proof. Predicate calculus: Introduction to Predicates - Statement functions, Variable and Quantifiers - Predicate Formulas - Free and Bound Variables-Universe of Discourse.					
III	Recurrence Relations: The Method of Characteristic Recurrence Relation. Roots – Solutions in Inhomogeneous					
IV	Relations and Directed Graphs: Special Properties of Binary Relations-Equivalence Relations- Ordering Relations, Lattices, and Enumerations-Operations on Relations- Paths and Closures-Directed Graphs and Adjacency Matrices.	CO1,CO4				
v	Graphs: Basic Concepts- Isomorphism's and Sub graphs-Trees and Their Properties - Spanning Trees-Planar Graphs-Euler's Formula- Multi-graphs and Euler Circuits-Hamiltonian Graphs- Chromatic Numbers.					

Learning Resources

Text Books

- 1.Discrete Mathematical Structures with Applications to Computer Science, J P Trembly and R Manohar, 1988, McGraw-Hill (**Unit-I,II**)
- 2. Discrete Mathematics for Computer Scientists & Mathematicians, Joe L. Mott. Abraham Kandel and Theodore P. Baker, Second Edition, 2017, PHI. (Unit-III,IV,V)

References

1. Discrete Mathematics and its Applications, Kenneth H. Rosen, Seventh Edition, 2017,McGraw-Hill.

e-Resources & other digital material

- 1. https://www.geeksforgeeks.org/engineering-mathematics-tutorials/
- 2. https://www.tutorialspoint.com/discrete_mathematics/index.htm
- 3. http://www.alas.matf.bg.ac.rs/~mi10164/Materijali/DS.pdf
- 4. https://nptel.ac.in/courses/111107058/