NUMERICAL METHODS AND COMPLEX VARIABLES									
Course Code	20BS1302	Year	II	Semester	Ι				
Course Category	Basic Sciences course	Branch	ECE	Course Type	Theory				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil				
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100				

Course Outcomes

	After successful completion of the course, the student will be able to						
CO1	Understand the basic concepts of Numerical Methods and complex variables.(L2)						
CO2	Apply different Numerical methods to solve the problems of numerical differentiation, integration, ordinary differential equations.(L3)						
	differentiation, integration, ordinary differential equations.(L3)						
CO3	Construct an analytic function and complex power series. (L3)						
CO4	Estimate the interpolated values, approximate roots, areas and derivatives. (L4)						
CO5	Analyse the region to evaluate integrals. (L4)						
CO6	Apply the concepts of Numerical methods and Complex variables to solve the						
	problems and submit a report. (L3)						

Contribu	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)												s &	
	PO1	PO2	PO3		PO5		PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	1													
CO2	2								2	2				
CO3	3								2	2				
CO4		2							3	3				
CO5		2							3	3				
CO6	1								2	2				
Average* (Rounded to nearest integer)	2	2							2	2				

UNIT No.	Contents	Mapped COs
I	Solution to Algebraic and Transcendental Equations Solution of algebraic and transcendental equations: Bisection method, method of false position and Newton-Raphson's method. Finite differences, relation between operators, interpolation using Newton's forward and backward difference formulae. Interpolation with unequal intervals: Lagrange's formula. (All theorems/properties without proofs)	CO1,CO2, CO4,CO6
II	Numerical Differentiation and Integration Numerical Differentiation- Newton's forward and backward difference formulae. Numerical integration- trapezoidal rule,	CO1,CO2, CO4,CO6

		Simpson's $\frac{1}{3}^{rd}$ and $\frac{3}{8}^{th}$ rules. Ordinary differential equations: Euler's, modified Euler's, Runge-Kutta method of fourth order for solving first order equations. (All theorems/properties without proofs)					
	III	 Functions of a complex variable: Differentiability – Analyticity – Properties – Cauchy-Riemann equations in Cartesian and polar coordinates. Harmonic and conjugate harmonic functions –Milne- Thompson's method. (All theorems/properties without proofs) 					
Г	IV	Complex Integration: Line integral – Evaluation along a path– Cauchy's integral theorem – Cauchy's integral formula – Generalized integral formula. Complex power series: Radius of convergence – Expansion in Taylor's series, Maclaurin's series and Laurent series. (All theorems/properties without proofs)	CO1,CO3, CO5,CO6				
	V	Singular points – Isolated singular point – pole of order n – essential singularity. Residue – Evaluation of residues - Residue theorem – Evaluation of integrals of the form $\int_0^{2\pi} f(\cos\theta, \sin\theta)d\theta$ and $\int_{-\infty}^{\infty} f(x)dx$ (All theorems/properties without proofs)	CO1,CO3, CO5,CO6				

Learning Recourse (s)

Text Book(s)

1. B.S. Grewal, *Higher Engineering Mathematics*, Khanna Publishers, 44/e, 2019.

2. Engineering Mathematics (Volume – III) - S. Chand - T. K. V. Iyengar, B. Krishna Gandhi, S. Ranganatham, M.V.S.S.N. Prasad- 9th Revised Edition: 2012.

Reference Book(s)

1. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.

e- Resources & other digital material

- 1. https://www.nptel.ac.in/courses/111/107/111107105/
- 2. https://www.nptel.ac.in/courses/111/105/111105134/
- 3. <u>https://nptel.ac.in/courses/111/106/111106141/</u>
- 4. FED Moodle