NUMERICAL & STATISTICAL METHODS

Course Code	Course Code 20BS1301		Year II		I	
Course	Basic	Branch	ME	Course Type	Theory	
Category	Sciences	Dranch	ME	Course Type		
Credits	3	L-T-P	3-0-0	Pre-requisites	Nil	
Continuous		Semester				
Internal	30	End	70	Total Marks	100	
Evaluation		Evaluation				

Course Outcomes: Upon successful completion of the course, the student will be able to

CO	Statement	Skill	BTL	Units
CO1	Understand the basic concepts of Numerical and statistical Methods	Understand	L2	1,2,3,4,5
CO2	Apply different Numerical methods to solve the problems of numerical differentiation, integration, ordinary differential equations.	Apply	L3	1,2,
CO3	Apply concepts of probability and random variables to real life problems.	Apply	L3	3,4,5
CO4	Estimate the interpolated values, approximate roots, areas and derivatives.	Analyze	L4	1,2,5
CO5	Analyse the data to test of hypothesis corresponding to mean, proportions for large and small samples.	Analyze	L4	3,4,5
CO6	Apply different methods to solve Numerical and statistical problems and submit a report.	Apply	L3	1,2,3,4,5

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low)													
	PO1	PO2									PO12	PSO1	PSO2
CO1													
CO2	3								2	2		2	
CO3	3								2	2		2	
CO4		3										2	
CO5		3										2	
CO6	3								2	2		2	

Syllabus					
UNIT	Contents	Mappe d COs			
I	Solution to Algebraic and Transcendental Equations Solution of algebraic and transcendental equations: Bisection method, method of false position and Newton-Raphson's method. Finite differences, relation between operators, interpolation using Newton's forward and backward difference formulae. Interpolation with unequal intervals: Lagrange's formula. (All theorems/properties without proofs)	CO1, CO2, CO4, CO6			
II	Numerical Differentiation and Integration Numerical Differentiation- Newton's forward and backward difference formulae. Numerical integration- trapezoidal rule, Simpson's $\frac{1}{3}^{rd}$ and $\frac{3}{8}^{th}$ rules. Ordinary differential equations: Euler's, modified Euler's, Runge-	CO1, CO2, CO4, CO6			

	Kutta method of fourth order for solving first order equations. (All						
	theorems/properties without proofs)						
Ш	Probability Random variables (discrete and continuous), probability density functions, probability distribution: Binomial - Poisson - normal distribution and their properties (mathematical expectation and variance). (All theorems/properties without proofs)	CO1, CO3, CO5, CO6					
IV	Testing of Hypothesis Formulation of null hypothesis, critical regions, level of significance. Large sample tests: Test for single proportion, difference of proportions, test for single mean and difference of means.	CO1, CO3, CO5,					
V	Small Sample Tests Student's t-distribution (single mean, two means and paired t-test), Testing of equality of variances (F-test)	CO1, CO3, CO5, CO6					

Text Book(s)

- 1. B.S. Grewal, *Higher Engineering Mathematics*, Khanna Publishers, 44/e, 2019.
- 2. T.K.V.Iyenger, Krishna Gandhi and others, *Probability & Statistics*, S.Chand.

Reference Book(s)

- 1. Erwin Kreyszig, *Advanced Engineering Mathematics*, 9/e, John Wiley & Sons, 2006.
- 2. Miller and Freund's, Probability and Statistics for Engineers, Pearson.

e- Resources & other digital material

- 1. https://www.nptel.ac.in/courses/111/107/111107105/
- 2. https://www.nptel.ac.in/courses/111/105/111105041/
- 3. https://www.nptel.ac.in/courses/111/106/111106112/
- 4. https://www.nptel.ac.in/courses/111/105/111105090/
- 5.FED Moodle