APPLIED PHYSICS LAB

Course Code	20BS1253	Year	I	Semester	II
Course Category	Basic Science	Branch	ME	Course Type	Theory
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous Internal Evaluation	15	Semester End Evaluation	35	Total Marks	50

Course Outcomes: Upon successful completion of the course, the student will be able to

CO	Statement	Skill	BTL	Expt. No
CO1	Demonstrate elastic limit and stress-strain relationship using Hooke's law.	Apply	L3	1-10
CO2	Apply resonance to estimate the frequency of a tuning fork and examine the relation between frequency and volume of a cavity.	Apply	L3	2-5
CO3	Determine the rigidity modulus, and Poisson's ratio of a material.	Apply	L3	6,7
CO4	Examine the type of semiconductor and evaluate the acceptance angle, numerical Aperture an optical fiber.	Analyze	L4	8,9
CO5	Estimate thermal conductivity of bad and good conductors.	Analyze	L4	10
CO6	Summarize and tabulate the experimental observations and output.	Analyze	L4	1-10

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low)												
										PSO2			
CO1	3			2			2				2	3	2
CO2	3			2			2				2	3	2
CO3	3			2			2				2	3	2
CO4	3			2			2				2	3	2
CO5	3			2			2				2	3	2
CO6	3			2			2				2	3	2

Syllabus						
Expt.	Contents	Mapped CO's				
No.						
1	To Verify Hooke's Law.	CO1,CO6				
2	To Verify the relation between Volume of the Air in the Resonator and					
	Frequency of note.					
3	To Study Resonance in an LCR Series & parallel Circuit.	CO2,				
4	To verify the laws of transverse vibrations of a string using Sonometer.	CO6				
5	To Determine the Frequency of Electrically maintained Tuning Fork by					
	Melde's method.					
6	To Determine The Rigidity Modulus of Material (Wire) -Dynamic	CO3				
	Method (Torsional Pendulum)	CO3, CO6				
7	To Determine The Poisson's Ratio of Rubber tube.	CO0				

8	To Determine the Hall Coefficient using Hall Effect Experiment.	
9	To Determine the Numerical Aperture of a given Optical Fibre and hence to find its Acceptance Angle.	CO4, CO6
10	To Determine The Thermal Conductivity of A Bad Conductor By Lee's	CO5,

Department of Mechanical Engineering

PVP20

Disc Method.							CO6
	Lea	arning R	esources				
Text Books							
1. RamaraoSri, Choudary Nityanand	and	Prasad	Daruka,	"Lab	Manual	of	Engineering
Physics" Vth ed., Excell Books, 20	010						-

Reference Books

PVPSIT

1. Prithwiraj Purkait, Budhaditya Biswas and Chiranjib Koley, Chapter 11 Sensors and Transducers, Electrical and Electronics Measurements and Instrumentation, 1/e., 2013 McGraw Hill Education (India) Private Limited, 2013

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/115/105/115105120/
- 2. https://nptel.ac.in/courses/115/107/115107095/
- 3. https://nptel.ac.in/courses/115/104/115104109/
- 4. http://www.physicsclassroom.com/The-Laboratory
- 5. https://www.vlab.co.in/broad-area-physical-sciences