Department of Mechanical Engineering

LIFE SCIENCES FOR ENGINEERS

Course Code	20MC1101	Year	Ι	Semester	I	
Course Category	Mandatory	Branch	ME	Course Type	Theory	
Credits	0	L-T-P	2-0-2	Prerequisites	Nil	
Continuous Internal	30	Semester End	70	Total	100	
Evaluation	30	Evaluation	70	Marks	100	

Course Outcomes: Upon successful completion of the course, the student will be able to

CO	Statement	Skill	BTL	Units
CO1	Apply the concepts of biology to create tangible and economically viable engineering goods.	Apply	L3	1,2
CO2	Analyse new technologies in Genetics biotechnology, pharmaceutical, medical and agricultural fields from the knowledge gained from DNA technology.	Analyze	L4	2,5
CO3	Apply the knowledge of biology to improve the living standards of societies.	Apply	L3	3,4
CO4	Apply the basic knowledge of genetics and DNA technology for disease diagnostics and therapy.	Apply	L3	4
CO5	Analyse new technologies in biotechnology, pharmaceutical, medical and agricultural fields from the knowledge gained from DNA technology.	Analyze	L4	5

	Contribution of Course Outcomes towards achievement of Program Outcomes &												
	Strength of correlations (3: High, 2: Medium, 1: Low)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PS							PSO2					
CO1	3									2		1	
CO2					3					2		1	
CO3					3					2		1	
CO4					3	3				2		1	
CO5	3					3				2		1	

	Syllabus	
Unit	Contents	Mapped CO's
1	Introduction to Biology Comparison of Biological organisms with manmade systems :Eye and Camera ,Flying bird and Aircraft Ultra structure of cell: Prokaryotes and Eukaryotes	CO1
2	Bio-molecules Structure and functions of proteins (antibodies) Structure and functions of nucleic acids Industrial applications- Enzymes and Fermentation	CO1 CO2
3	Bioenergetics and Cellular Respiration Mechanism of photosynthesis Glycolysis TCA cycle Electron transport chain and Oxidative phosphorylation.	CO3
4	Genetics Mendel'slaws Gene mapping	CO3 CO4

m v	DOTE
P V	PSII

Department of Mechanical Engineering

TOT	7	2	n
Р١	/ P	, , ,	

	Single gene disorders in humans	
5	Recombinant DNA Technology	CO2
	Recombinant vaccines, transgenic microbes, plants and animals. Animal	
	cloning, biosensors, biochips.	CO5

Expt. No.	Name of the experiment	Mapped CO's
1	Dissect & mount different parts of plants using Microscope	CO1
2	Estimation of Proteins by using Biuret method	CO2
3	Estimation of enzyme activity.	CO2
4	Estimation of chlorophyll content in some selected plants.	CO3
5	Nitrogen Cycle: Estimation of Nitrates /Nitrites in soil by using	CO3
	Spectrophotometer	
6	Mendal's laws and gene mapping	CO4, CO5

Learning Resources

Text Books

- 1. Biology for Engineers-Wiley Editorial
- 2. N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2018.
- 3. Biotechnology by U.Satyanarayana, Alliedand books Pvt. ltd. Kolkata

Reference Books

- 1. Alberts et al., The molecular biology of the cell, 6/e, Garland Science, 2014.
- 2. John Enderle and Joseph Bronzino Introduction to Biomedical Engineering, 3/e, 2012