PROBLEM SOLVING AND PROGRAMMING WITH PYTHON LAB

Course Code	20ES1152	Year	I	Semester	I
Course Category	Engineering Science	Branch	ME	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous Internal Evaluation	15	Semester End Evaluation	35	Total Marks	50

Course Outcomes: Upon successful completion of the course, the student will be able to

CO	Statement	Skill	BTL	Expts.
CO1	Apply visual programming concepts, flowchart design techniques and Python programming constructs for solving problems.	Apply	L3	1-10
CO2	Conduct experiments as an individual, or team member by using Scratch/Raptor tools and Python programming.	Apply	L3	1-10
CO3	Develop an effective report based on various programs implemented.	Apply	L3	1-10
CO4	Apply technical knowledge for a given problem and express with an effective oral communication.	Apply	L3	1-10
CO5	Analyze outputs generated through Scratch/Raptor tools and Python programming.	Analyze	L4	1-10

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3: High, 2: Medium, 1: Low) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2										PSO2			
CO1	3	102	100	10.	100	100	10,	100	10)	1010	1011	2	2	2
CO2					3				3				2	2
CO3										3				
CO4	3									3				
CO5		3												

	Syllabus					
Expt.No.	Contents	Mapped CO's				
1	Apply Visual Programming Concepts using Scratch	CO1, CO2,				
1	tool.	CO3, CO4, CO5				
2	Solve various computational problems by designing	CO1, CO2,				
2	flowcharts using Raptor tool.	CO3, CO4, CO5				
3	Python programs on usage of operators.	CO1, CO2,				
3	1 ython programs on usage of operators.	CO3, CO4, CO5				
4	Python Programs to demonstrate decision making and	CO1, CO2,				
4	branching (Selection)	CO3, CO4, CO5				
5	Python programs to demonstrate iterative statements.	CO1, CO2,				
	1 ython programs to demonstrate iterative statements.	CO3, CO4, CO5				
6	Python programs to demonstrate functions	CO1, CO2,				
U	1 ython programs to demonstrate runctions	CO3, CO4, CO5				
7	Python programs to perform operations on strings,	CO1, CO2,				
/	regular expressions with built – in functions.	CO3, CO4, CO5				
8	Python programs to handle file operations.	CO1, CO2,				
O	1 yulon programs to handle the operations.	CO3, CO4, CO5				

9	Python programs to apply various data structures.	CO1, CO2,
	r yulon programs to appry various data structures.	CO3, CO4, CO5
		~~.

Department of Mechanical Engineering

PVP20

9	Python programs to apply various data structures.	CO1, CO2, CO3, CO4, CO5
1 10 1	Installing, importing and accessing numpy and pandas packages.	CO1, CO2, CO3, CO4, CO5

Learning Resources

Text Books

- 1. An introduction to programming and algorithmic reasoning using raptor, Weingart,
- 2. Dr. Troy, Brown, Dr. Wayne, 2018, CreateSpace (an Amazon.com Company)
- 3. Core Python Programming, R. Nageswara Rao, 2018, Dreamtech press.

Reference Books

PVPSIT

- 1. Python Programming: Using Problem Solving Approach, Reema Thareja, 2017, Oxford University Press.
- 2. Programming with python, T R Padmanabhan, 2017, Springer.
- 3. Python for Data Analysis, Wes McKinney, 2012, O.Reilly.

e- Resources & other digital material

- 1. http://fusecontent.education.vic.gov.au/9f79537a-66fc-4070-a5cee3aa315888a1/scratchreferenceguide14.pdf
- 2. https://raptor.martincarlisle.com/
- 3. http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/thinkcspy3.pdf