CALCULUS AND LINEAR ALGEBRA

Course Code	20BS1101	Year	I	Semester	I
Course Category	Basic Science	Branch	ME	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

Course Outcomes: Upon successful completion of the course, the student will be able to

CO	Statement	Skill	BTL	Units
CO1	Understand the basic concepts of calculus and linear algebra.	Understand	L2	1,2,3,4,5
CO2	Apply the echelon form to obtain the solution of system of linear equations and eigen vectors of a matrix.	Apply	L3	1,2,
CO3	Apply the concepts of calculus to find the series expansion and extremum of a given function ,area enclosed by plane curves and volume of the solids.	Apply	L3	3,4,5
CO4	Analyse the solution set of linear system of equations and nature of the quadratic forms.	Analyze	L4	1,2
CO5	Analyse the behaviour of functions using mean value theorems, extremum of the given function and limits of integration.	Analyze	L4	3,4,5
CO6	Apply the concepts of calculus and linear algebra to the given problem and submit a report	Apply	L3	1,2,3,4,5

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO							PSO2					
CO1												1	
CO2	3								2	2		1	
CO3	3								2	2		1	
CO4		3										1	
CO5		3										1	
CO6	3								2	2		1	

Syllabus					
UNIT	Contents	Mapped COs			
I	Matrices-Linear System of Equations: Rank of a matrix by Echelon form, Normal form, PAQ form, solving system of homogeneous and non-homogeneous linear equations.	CO1 CO2 CO4 CO6			
II	Eigen values and Eigen Vectors: Eigen values, Eigen vectors and their properties, Cayley-Hamilton theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton theorem, diagonalization of a matrix, quadratic forms and nature of the quadratic forms.	CO1 CO2 CO4 CO6			

DI/	DCI	Т	1
PV	P > 1		

Department of Mechanical Engineering

DX7	20
$\mathbf{P} \mathbf{V}$	P 20

III	Mean Value Theorems: Rolle's Theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, Taylor's and Maclaurin's theorems with remainders (without proofs).	CO1 CO3 CO5 CO6
IV	Multivariable Calculus: Functions of several variables, Jacobian, Functional dependence, maxima and minima of functions of two variables, method of Lagrange's multipliers.	CO1 CO3 CO5 CO6
v	Multiple Integrals: Double integrals, change of order of integration, double integration in polar coordinates, Triple integrals, change of variables between Cartesian, cylindrical and spherical polar co-ordinates, volume as triple integral. Application- Areas enclosed by plane curves.	CO1 CO3 CO5 CO6

Learning Recourse(s)

Text Book(s)

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006

Reference Book(s)

1. N.P. Bali and Manish Goyal, A Text book of Engineering Mathematics, Laxmi Publications, 2008.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/111/108/111108157/
- 2. https://www.nptel.ac.in/courses/111/104/111104125/
- 3. https://youtu.be/xDSejIvZmg4
- 4. http://202.53.81.118/ -> PVPSIT FED-Moodle